Nets and Tiling

Michael O'Keeffe

Introduction to tiling theory and its application to crystal nets

Start with tiling in two dimensions.
Surface of sphere and plane
Sphere is two-dimensional. We require only two coordinates to specify position on the surface of a sphere:

The coordinates of
Berkeley $\quad 37.9$ N, 122.3 W
Tempe $\quad 33.4 \mathrm{~N}, 121.9 \mathrm{~W}$

As far as we are concerned
Tilings in two dimensions are edge-to-edge (each edge is common to just two tiles)

In three dimensions face-to-face (each face common to just two tiles)

Three different embeddings of the same abstract tiling

brick wall
c2mm
honeycomb p6mm

herringbone
p2gg

Again, two embeddings of the same abstract tiling

double brick

Cairo tiling

Both have same symmetry, $p 4 g m$. The Cairo conformation is the minimum density for equal edges.

Recall Steinitz theorem

Planar 3-connected graph is graph of a convex polyhedron

Tilings of the sphere (polyhedra) - regular polyhedra. one kind of vertex, one kind of edge, one kind of face

Quasiregular polyhedra: one kind of vertex, one kind of edge

Tiling of the plane - regular tilings one kind of vertex, one kind of edge, one kind of face

3^{6}
hexagonal lattice

4^{4}
square lattice

6^{3}
honeycomb net
quasiregular
one kind of vertex, one kind of edge 3.6.3.6 kagome net

honey comb net is not a lattice

A lattice is a set of points related by translations
honeycombnet is actually a lattice complex

- a set of symmetry-related points related by translations

cubic Archimedean polyhedra - one kind of vertex

rhombicuboctahedron rco $3.4^{3}\left[3^{8} .4^{18}\right]$

snub cube snc $3^{4} .4\left[3^{32} .4^{6}\right]$

truncated tetrahedron
tte $3.6^{2}\left[6^{4} .4^{4}\right]$
truncated cube $\operatorname{tcu} 3.8^{2}\left[3^{8} .8^{6}\right]$

cuboctahedron cuo 3.4.3.4 [$3^{8} .4^{6}$]
truncated octahedron tro $4.6^{2}\left[4^{6} .6^{8}\right]$

truncated cuboctahedron tco $\quad 4.6 .8\left[4^{12} .6^{8} .8^{6}\right]$
icosahedral Archimedean poyhedra - one kind of vertex

icosidodecahedron ido 3.5.3.5 $\left[3^{20} .5^{12}\right]$
truncated icosahedron tic $5.6^{2}\left[5^{12} .6^{20}\right]$

snub dodecahedron snd $3^{4} .5\left[3^{80} .5^{12}\right]$

truncatedicosidodecahedron
tid 4.6.10 $\left[4^{30} .6^{20} \cdot 10^{12}\right]$

8 Archimedean tilings

Picture is from O'Keeffe \& Hyde Book

3.6.3.6

3.12^{2}

Fig. 5.39. The Archimedean tilings. Top row: $3^{4} .6,3^{3} .4^{2}$ and 3^{2}.4.3.4. Middle row: 3.4.6.4, 3.6.3.6 and 4.8^{2}. Bottom row: 3.12^{2} and 4.6 .12 . Unit cells are outlined with broken lines.

Duals of two-dimensional tilings vertices $\longleftrightarrow>$ faces

dual of octahedron 3^{4} is cube 4^{3}

dual of cube 4^{3} is octahedron 3^{4}
dual of dual is the original tetrahedron is self-dual

Duals: edges <-> faces

The dual of a dual is the original
tetrahedron is self-dual

Duals of 2-D periodic nets

$$
3^{6} \Leftrightarrow 6^{3}
$$

AlB_{2}

4^{4} < 4^{4}
self-dual

Important terms:

Polyhedron convex solid with planar faces has a planar three-connected graph.*

Simple polyhedron all vertices trivalent
Simplicial polyhedron all faces triangles

Simple and simplicial polyhedra are duals of each other.
*We will call non-conxex solids, maybe with divalent vertices, cages.

$\mathrm{SrMgSi}\left(\mathrm{PbCl}_{2}\right)$ one of the most-common ternary structure types net and dual (same net displaced) alternate

Euler equation and genus.
For a (convex) polyhedron with
V vertices
E edges
F faces
$V-E+F=2$

Euler equation and genus.
For a plane tiling with, per repeat unit
v vertices
e edges
f faces
$v-e+f=0$

Euler equation and genus.

For a tiling on a surface of genus g, with, per repeat unit
v vertices
e edges
f faces
$v-e+f=2-2 g$

The surface of a body with g holes has genus g
genus of a surface
sphere $g=0$
note all vertices
4^{4} just like square
torus $g=1$
plane $g=1$
 double torus $g=2$

genus of a net = cyclomatic number of quotient graph

genus of pcu net is 3

Two interpenetrating pcu nets

The P minimal surface separates the two nets. Average curvature zero Gaussian curvature neg.
infinite poyhedra - tilings of periodic surfaces
$4^{3} .6$ tiling of the P surface ($\mathrm{g}=3$)

4-coordinated net rho (net of framework of zeolite RHO)

for the polyhedron
$v=48, e=96, f=44, v-e+f=-4=2-2 g$

3-periodic net has vertex symbol 4.4.4.6.8.8

6.8^{2}

$\left(6^{3}\right)\left(6^{2} .8\right)_{2}$
tilings of P surface ("Schwarzites")

- suggested as possible low energy polymorphs of carbon

Tiling in 3 dimensions

Filling space by generalized polyhedra (cages) in which at least two edges meet at each vertex and two faces meet at each edge. Tilings are "face-to-face"

exploded view of space filling by cube tiles

tiling plus net of vertices and edges

net "carried" by tiling pcu

Tiling that carries the diamond (dia) net The tile (adamantane unit) is a cage with four 3-coordinated and six 2-coordinated there are four 6-sided faces i.e. [64]

adamantane unit

Tiles other than the adamantane unit for the diamond net (These are not proper - they have lower symmetry)

the arrows point to vertices on a 6-ring that is not a tile face

We have seen that if a net has a tiling at all, it has infinitely many made by joining or dividing tiles The tiling by the adamantane unit appears to be the "natural" tiling for the diamond net. What is special about it? It fits the following definition:

The natural tiling for a net is composed of the smallest tiles such that:
(a) the tiling conserves the maximum symmetry. (proper)
(b) all the faces of the tiles are strong rings.

Notice that not all strong rings are necessarily faces A net may have more than one tiling that fits these criteria. In that case we reject faces that do not appear in all tilings.
V. A. Blatov, O. Delgado-Friedrichs, M. O'Keeffe, D. M. Proserpio Acta Cryst A 2007, 63, 418.
natural tiling for body-centered cubic (bcu)

one tile

blue is 4-ring face of tile $=$ essential ring red is 4-ring (strong) not essential ring

Simple tiling

A simple polyhedron is one in which exactly two faces meet at each edge and three faces meet at each vertex.
A simple tiling is one in which exactly two tiles meet at each face, three tiles meet at each edge and four tiles meet at each vertex (and the tile is a simple polyhedron). They are important as the structures of foams, zeolites etc. The example here is a tiling by truncated octahedra which carries the sodalite net (sod) (Kelvin structure).

just for fun:
natural tiling of a complex net - that of the zeolite paulingite PAU

The same tile can produce more than one tiling. Here the congressane (double adamantane) tile is used to form two different tilings that carry the diamond net. (But notice the symmetry of the tilings is lower than that of the net so they are not proper tilings).

R-3m

$P 432$

Flags

regular tilings are flag transitive

2-D flag
vertex-edge-2D tile

3-D flag
vertex-edge-face-3D tile

Regular tilings and Schläfli symbols

(a) in spherical (constant positive curvature) space,
(b) euclidean (zero curvature) space
(c) hyperbolic (constant negative curvature) space
i.e. in S^{d}, E^{d}, and H^{d} (d is dimensionality)
H. S. M. Coxeter 1907-2003

Regular Polytopes, Dover 1973
The Beauty of Geometry, Dover 1996

Start with one dimension.
Polygons are the regular polytopes in S^{1} Schläfli symbol is $\{p\}$ for p-sided

$\{\infty\}$ is degenerate case - an infinite linear group of line segments. Lives in E^{1}

Two dimensions. The symbol is $\{\mathrm{p}, \mathrm{q}\}$ which means that $\mathrm{q}\{\mathrm{p}\}$ meet at a point three cases:
case (a) $1 / p+1 / q>1 / 2 \rightarrow$ tiling of S^{2}
$\{3,3\}$ tetrahedron
$\{3,4\}$ octahedron
$\{3,5\}$ icosahedron
$\{4,3\}$ cube
$\{5,3\}$ dodecahedron

tet $=$
tetrahedron

oct $=$
octahedron

cub $=$ cube

ico $=$
icosahedron

dod $=$ dodecahedron

Two dimensions. The symbol is $\{\mathrm{p}, \mathrm{q}\}$ which means that $\mathrm{q}\{\mathrm{p}\}$ meet at a point three cases:

case (b) $1 / p+1 / q=1 / 2 \rightarrow$ tiling of E^{2}
$\{3,6\}$ hexagonal lattice
$\{4,4\}$ square lattice
$\{6,3\}$ honeycomb lattice complex

$\mathbf{h x I}=$
hexagonal lattice

$\mathbf{s q l}=$
square lattice

hcb = honeycomb

Two dimensions. The symbol is $\{p, q\}$ which means that $q\{p\}$ meet at a point infinite number of cases:
case (c) $1 / p+1 / q<1 / 2 \rightarrow$ tiling of H^{2}
any combination of p and $q($ both >2) not already seen

$\{7,3\}$

$\{8,3\}$

\{9,3\}
space condensed to a Poincaré disc

Three dimensions. Schläfli symbol $\{p, q, r\}$ which means $r\{p, q\}$ meet at an edge.

Again 3 cases
case (a) Tilings of S^{3} (finite 4-D polytopes)
\{3,3,3\} simplex
$\{4,3,3\}$ hypercube or tesseract
$\{3,3,4\}$ cross polytope (dual of above)
\{3,4,3\} 24-cell
$\{3,3,5\} 600$ cell (five regular tetrahedra meet at each edge)
$\{5,3,3\} 120$ cell (three regular dodecahedra meet at each edge)

Three dimensions. Schläfli symbol $\{p, q, r\}$ which means $r\{p, q\}$ meet at an edge.

Again 3 cases
case (b) Tilings of E^{3}
$\{4,3,4\}$ space filling by cubes self-dual
Only regular tiling of E^{3}

So what do we use for tilings that aren't regular?
Delaney-Dress symbol or D-symbol (extended Schläfli symbol)

Introduced by Andreas Dress (Bielefeld) in combinatorial tiling theory.

Developed by Daniel Huson and Olaf Delgado-Friedrichs.

tile for pcu.

one kind of chamber
D-size = 1
D-symbol
<1.1:1 3:1,1,1,1:4,3,4>

tile for dia.
two kinds of chamber
D-size $=2$
D-symbol
<1.1:2 3:2,1 2, 12,2:6,2 3,6>

How do you find the natural tiling for a net?

Use TOPOS

How do you draw tilings?

Use 3dt

We ordinary people use face data for tilings 3dt converts them to D symbols.
See next slide:

TILING

NAME "srs"

GROUP I4132

FACES 10
0.125000 .125000 .12500
-0.12500 0.375000 .12500
$-0.125000 .625000 .37500$
$-0.375000 .625000 .62500$
$-0.375000 .375000 .87500$
$-0.125000 .375001 .12500$
0.125000 .125001 .12500
0.375000 .125000 .87500
$0.37500-0.125000 .62500$
$0.12500-0.125000 .37500$ END

D-symbol

$$
\begin{aligned}
& \text { <1.1:10 3:2 } 468 \text { 10,10 } \\
& 3579,654109,2 \\
& 10987: 10,223 \text { 3,10> }
\end{aligned}
$$

tile for srs net

To calculate D-size
The number of chambers in each tile $=4 \mathrm{x}$ number of edges / order of point symmetry

Tiling by cubes with 12 edges and symmetry $m-3 m$ (order 48)
D-size $=4 \times 12 / 48=1$
Diamond tile has 12 edges, symmetry $-43 m$ D-size $=4 \times 12 / 24=2$

Transitivity

Let there be p kinds of vertex, q kinds of edge, r kinds of face and s kinds of tile. Then the transitivity is pqrs.

Unless specified otherwise, the transitivity refers to the natural tiling.

We shall see that there are five natural tilings with transitivity 1111 ; these are tilings of the regular nets.
(There are at least two not-natural tilings with transitivity 1111 - these have natural tilings with transitivity 1121 and 1112 respectively)

Duals

A dual tiling tiling is derived from the original by centering the old tiles with new vertices, and connecting the new vertices with new edges that go through each old face. The dual of a dual tiling is the original tiling If a tiling and its dual are the same it is self dual. The dual of a tiling with transitivity pqrs is srqp. The dual of a natural tiling may not be a natural tiling. If the natural tiling of a net is self-dual, the net is naturally self dual.
The faces (essential rings) of a natural tiling of a net are catenated with those of the dual.

Duals (cont)

The number of faces of a dual tile is the coordination number of the original vertex.
The number of vertices of a face of a dual tile is the number of tiles meeting at the corresponding edge of the original tiling.
The dual of a simple tiling is thus a tiling by tetrahedra (four 3-sided faces)

Sodalite (sod) tile part of a simple tiling

Dual tiling (blue) is bcu-x 14coordinated body-centered cubic. A tiling by congruent tetrahedra

Simple tiling again
The dual of a tiling by tetrahedra may not be a simple tiling by simple polyhedra.

Here is an example the graph of the tile is 2-connected.
(3-coordinated, but not 3-connected!)
net is ber

This tiles fills space just by translations alone.
Tiling symmetry is $R-3$.

Some examples of dual structures
simple tiling
sodalite (sod)
type I clathrate (mep)
type II clathrate ($\mathbf{m t n}$)
tiling by tetrahedra body-centered cubic A15 $\left(\mathrm{Cr}_{3} \mathrm{Si}\right)$ MgCu_{2}

mep

$\mathrm{Cr}_{3} \mathrm{Si}(\mathrm{A} 15)$

Type I clathrate melanophlogite (MEP) Weaire-Phelan foam

examples of duals

diamond (dia) is naturally self dual

the dual of body-centered cubic (bcu) is the 4 -coordinated NbO net (nbo)

Tilings by tetrahedra: there are exactly
9 topological types of isohedral (tile transitive) tilings
117 topological types of 2-isohedral (tile 2-transitive)
In all of these there is at least one edge where exactly 3 or 4 tetrahedra meet. Accordingly none of them have embeddings in which all tetrahedra are acute (dihedral angles less than $\pi / 2$).

What do we know about tilings?

1. Exactly 9 topologically-different ways of tiling space by one kind of tetrahedron

Duals are simple tilings with one kind of vertex These include the important zeolite framework types SOD, FAU, RHO, LTA, KFI and CHA

Two of the remaining three (sod-a and hal) have 3 -membered rings. The other has many 4-rings
O. Delgado-Friedrichs et al. Nature, 400, 644 (1999)

wse not suitable for a silica zeolite

Example of isohedral tiling by tetrahedra (Somerville tetrahedra). Only one that is also vertex transitive So the dual structure is the only vertex- and tiletransitive simple tiling (transitivitv 1121)

vertices are body-centered cubic

> Dual structure (sodalite).
"Kelvin structure"

Another example: isohedral tiling by half-Somerville tetrahedra

Dual structure -zeolite RHO

The 1-skeleton (net) of RHO is also the 1 -skeleton of a $4^{3} .6$ tiling of a 3 -periodic surface.

Yet another isohedral tiling by tetrahedra

12 tetrahedra forming a rhombohedron

Fragment of dual structure Zeolite structure code FAU (faujasite) - billion dollar material!
Also a $4^{3} .6$ tiling of a surface

Isohedral simple tilings.

1. Enumerate all simple polyhedra with N faces (plantri - Brendan McKay ANU, Canberra)
2. Determine which of these form isohedral tilings

Faces	tilers	tilings
<14	0	0
14	10	23
15	65	136
16	434	710

O. Delgado-Friedrichs \& M. O'Keeffe, Acta Cryst. A, 61, 358 (2005)

The 23 isohedra simple tilings with 14 -face tiles

What's this?

A monotypic (but tile 4-transitive) simple tiling by a 14 -face polyhedron. Triclinic! P-1 RCSR symbol rug
R. Gabrielli and M. O'Keeffe, Acta Cryst A64, 430 (2008)

D symbol for rug

D-size $=576$ 4.36.4

transitivity
 2448324

 222224226228230232234236238240242244246248250252254256258260262264266268270
 322324326328330332334336338340342344346348350352354356358360362364366368370
 422424426428430432434436438440442444446448450452454456458460462464466468470 472474476478480482484486488490492494496498500502504506508510512514516518520 522524526528530532534536538540542544546548550552554556558560562564566568570 572574576,8357181113151728212325274031333537395243454749516455575961

 471482475477479481492485487489491502495497499501514505507509511513526517519 521523525536529531533535548539541543545547558551553555557566561563565576569 571573575,91019202930414228275354656644434039757663645251858695968384

 411431432419420429430428427443444453454463464473474483484462461493494503504 486485472471515516501502482481527528525526492491537538535536505506547548514 513549550518517546545559560557558551552567568530529569570540539571572565566

 202168167176175174173172171170169433434435436437438439440441442494493502501 500499498497496495250249258257256255254253252251301302303304305306307308299
 317318443444445446447448449450451452453454455456457458459460461462263264265
 505506507508509510511512463464465466467468469470471472518517516515526525524 523522521520519402401400399398397396395394393572571570569568567576575574573 533534535536527528529530531532419420421422423424429430431432550549558557556
 555554655555655655556455555556656545,333333333313310 33 33333333303343333333333333333333,333333333333333333
 333333333333333333333333333 3>

How to find edge-transitive nets?
A net with one kind of edge has a tiling that is dual to a tiling with one kind of face.

So let's systematically enumerate all tilings with one kind of face. (faces can be two sided like a coin)

1. list all polyhedra with one kind of face
2. extend the faces with divalent vertices
3. see if the cages form proper tilings
O. Delgado-Friedrichs \& M. O'Keeffe, Acta Cryst. A, 63, 244 (2007)

Examples of [64] face-transitive tiles

Table 1. Edge-transitive nets retrieved in this study listed by size of the Delaney-Dress symbol (D-symbol) of the proper tiling with smallest size. The 3-letter symbols are the RCSR (http://rcsr.anu.edu.au/) symbols.

end

