Taxonomy of Nets

Michael O'Keeffe

Enumeration and classificaion of crystal nets

Taxonomy of nets and tilings: Classification by transitivity Tiling a surface

1. Tiling of sphere (polyhedra, 0 -periodic)
2. Tiling of cylinder (1-periodic nets)
3. Tiling of plane (2-periodic nets)
transitivity: 111 regular
112 quasiregular
$21 r$ other edge transitive

Tiling of space (3-periodic nets) transitivity: 1111 regular
1112 quasiregular
$11 r s$ semiregular
$21 r s$ other edge transitive

Reminder

2-D tilings: transitivity $=p q r$
p kinds of vertex
q kinds of edge
r kinds of face (2-D tile)
3-D tilings: transitivity $=$ pqrs
p kinds of vertex
q kinds of edge
r kinds of face
s kinds of tile

There are infinitely many polyhedra and nets with one kind of vertex. But...

The are only a small number with one kind of edge

This has important implications for chemistry

All edge-transitive polyhedra - tilings of $\mathbf{S}^{\mathbf{2}}$

regular: transitivity 111

quasi-regular: transitivity 112
duals of quasi-regular: transitivity 211

All possible ways of linking polygons with one kind of link to form 0-periodic structures

Augmented (truncated) edge-transitive polyhedra

The only family of edge-transitive tilings of cylinder
special case

regular cylinder tiling: transitivity 111

The augmented structure: The only 1-periodic structure of polygons joined by equal links

all edge-transitive 2-periodic nets

honeycomb 111

kagome 112 (quasiregular)

kagome dual 211

All possible ways of linking polygons with one kind of link to form 2-periodic structures

augmented regular nets

augmented quasiregular

augmented dual of quasiregular

Summary of tiling 2-surfaces. All edge-transitive structures
Sphere -> $111=5$ regular polyhedra $112=2$ quasiregular polyhedra $211=2$ duals of above

Plane -> $111=3$ regular nets $112=1$ quasiregular net $211=1$ dual of above
cylinder->111 one family

So there aren't too many (but if we include hyperbolic surfaces the number becomes infinite - S. T. Hyde).

Regular 3-periodic nets

Vertex (coordination) figure is a regular polygon or polyhedron
As the net is periodic, the vertex figure can only have crystallographic symmetry (1-, 2-, 3-, 4- or 6-fold rotations) So possibilities are

1. triangle
2. square
3. tetrahedron
4. octahedron
5. cube
(hexagon cannot lead to a 3-D structure as all 6-fold axes must be parallel)
There is only one possibility in each case $\rightarrow 5$ regular nets

Start with one node linked to three others

add next neighbors

It turns out that:

regular nets have transitivity 1111

For natural tilings there are no more with
transitivity 1111
(this is rather nice)
vertex figure: triangle

srs (the SrSi_{2} net)

natural tiling [10 ${ }^{3}$]

the augmented net srs-a

skeleton of tile with dual (self)

A Crystal that Nature May Have Missed

K_4 crystal. Created by Hisashi Naito.

January 3, 2008
Providence, RI: For centuries, human beings have been entranced by the captivating glimmer of the diamond. What accounts for the stunning beauty of this most precious gem? As mathematician Toshikazu Sunada explains in an article appearing today in the Notices of the American Mathematical Society, some secrets of the diamond's beauty can be uncovered by a mathematical analysis of its microscopic crystal structure. It turns out that this structure has some very special, and especially symmetric, properties. In fact, as Sunada discovered, out of an infinite universe of mathematical crystals, only one other shares these properties with the diamond, a crystal that he calls the "K4 crystal". It is not known whether the K4 crystal exists in nature or could be synthesized.
"K4" = srs which is ubiquitous in nature from the structure of high-pressure nitrogen to butterfly wings

A light read on srs

Hyde, S. T.; Proserpio, D. M.; O'Keeffe, M.
A short history of an elusive, yet ubiquitous structure in chemistry, materials, and mathematics.

Angew. Chem. Int. Ed. 2008, 47, 7996.

The srs net is chiral (symmetry $I 4_{1} 32$). The dual is the enantiomorph. Here two srs nets of opposite hand are intergrown to form a centrosymmetric structure (symmetry Ia-3d). The surface separating the two nets is the G minimal surface (gyroid)

Alan Schoen's gyroid - periodic minimal surface G

Fragments of two srs nets

The same "blown up"

A "tile" of the G surface

G surface of Alan Schoen in 1970
bicontinuous surfactant/water phases =>
mesoporous silicates, etc

A minimal surface has positive and negative principal curvatures, k_{1} and k_{2}. For minimal surface:

Mean curvature $=\left(k_{1}+k_{2}\right) / 2=0$
Gaussian curvature $k_{1} k_{2}<0$

The nbo net

augmented net
nbo-a

natural tiling
[68]

dual is 8 -coordinated
bcu net (bcc, blue)

vertex figure: tetrahedron dia (diamond) net

augmented net dia-a

tiling
[64]

tile with dual (self dual)
D minimal surface separates two dia nets

Red is skeleton of tile of dia
approximation to the D
surface (should be smooth)

vertex figure: octahedron pcu (primitive cubic) net

augmented net $\mathbf{p c u} \mathbf{- a}=\mathbf{c a b}$

tiling [46]

tile with dual (self dual)
(B in CaB_{6})
P minimal surface separates two pcu nets

Two interpenetrating pcu nets (notice that the nets are self-dual)

The P minimal surface separates the two nets. Average curvature zero Gaussian curvature neg.

> vertex figure: cube
> bcu (body-centered cubic) net

augmented net bcu-a = pcb (polycubane)

tiling
[4 ${ }^{4}$]

tile with dual (dual is nbo)

Quasiregular net: vertex figure cuboctahedron fcu (face-centered cubic) net transitivity 1112

augmented net
$\mathbf{f c u}-\mathbf{a}=\mathbf{u b t}$
(B in UB_{12})

tiling
(note dual has two vertices)

$$
2\left[3^{4}\right]+\left[3^{8}\right]
$$

Normal dual of the fcu net. flu (fluorite) transitivity 2111

augmented net flu-a

tiling
[4 4^{12}]

3-periodic nets. The story so far:

The Regular Nets. Transitivity 1111

1. srs, triangle, $\mathrm{I4}_{1} 32$, Si net of SrSi_{2}
(self-dual)
2. nbo, square, $I m-3 m$, all atoms of $\mathrm{NbO} \quad$ (dual $=\mathbf{b c u})$
3. dia, tetrahedron, $F d-3 m$, diamond net (self-dual)
4. pcu, octahedron, $P m-3 m$, primitive cubic (self dual)
5. bcu, cube, $I m-3 m$, body-centered cubic (dual $=\mathbf{n b o}$)

Quasiregular. Transitivity 1112

6. fcu, cuboctahedron, face-centered cubic dual is ...
7. flu, cube and tetrahedron, net of fluorite $\left(\mathrm{CaF}_{2}\right)$ (transitivity 2111)
there are 14 more vertex and edge transitive nets $11 r s$:

What $11 r s$ structures are there?
11115 regular
11121 quasiregular
$11 r s 14$ semiregular
(these have embeddings in
which there is no inter-vertex
distance shorter than edges)

The augmented regular, quasiregular, and semiregular nets are ways of linking polygons or polyhedra with one kind of link.
augmented semiregular nets -1

augmented semiregular nets -2

Default structure for linking trigonal prisms: acs trans 1122

augmented net acs-a

tiling
$2\left[4^{3}\right]+\left[4^{3} .6^{2}\right]$

Half this tile
is the natural tile for graphite.
Dual of this is
a 4-coordinated structure:
dual [6]
(not natural)

more of the dual tiling the net is gra (graphite)

lns (lonsdaleite) dual of gra (graphite) using natural [6^{4}] tiles
graphite yellow "bonds' are shortest distances between layers

The net gra is $(3,5)-\mathrm{c}$

Default structure for linking hexagons hxg Symmetry Pn-3m. Transitivity 1121.

natural tile $\left[4^{6} .6^{4}\right]$

dual [46]
the augmented net $\mathbf{h x g}-\mathbf{a}=\mathbf{p b z}$
(polybenzene)

Digression: we can use the hxg tiles to build models of minimal surfaces. In each of the two models below, the filled and empty spaces are the same and the surface separating the two surfaces are the D and P minimal surfaces

D surface. The lines are edges of an hxg net

P surface
the net sod, symmetry Im-3m with transitivity 1121
atomic positions
$1 / 2,1 / 4,0$ etc
"imvariant lattice complex" W^{*}

tiling has transitivity 1121 simple tiling

Cubic invariant lattice complexes. O'K\&H p. 281 International Tables for Crystallography, Vol. A

fcu	F	$F m-3 m$	$4 a$	12
bcu	I	$I m-3 m$	$2 a$	8
reo	J	$P m-3 m$	$3 c$	8
Ics	S	$I-43 d$	$12 a$ or $12 b$	8
crs	T	$F d-3 m$	$16 c$ or $16 d$	6
Icy	${ }^{+} Y$	$P 4_{3} 32$	$4 a$	6
Icy	$-Y$	$P 4_{1} 32$	$4 a$	6
dia	D	$F d-3 m$	$8 a$ or $8 b$	4
Icv	${ }^{+} V$	$I 4_{1} 32$	$12 d$	4
Icv	$-V$	$I 4_{3} 32$	$12 d$	4
nbo	J^{*}	$I m-3 m$	$6 b$	4
sod	W^{*}	$I m-3 m$	$12 d$	4
Ics	S^{*}	$I a-3 d$	$24 c$	4
srs	${ }^{+} Y^{*}$	$I 4_{1} 32$	$8 a$	3
srs	$-Y^{*}$	$I 4_{1} 32$	$8 b$	3
srs-C	$Y^{*} *$	$I a-3 d$	$16 b$	3
Icw	W	$I m-3 m$	$6 c$ or $6 d$	2

Structures based on edge-transitive nets with two kinds of vertex (transitivity 21rs)

These are of two kinds

1. Structures based on coloring of nets with one kind of vertex (e.g. the NaCl structure is derived from pcu (primitive cubic) by alternating Na and Cl at the vertices.
2. Structures in which the vertices have different vertex figures (e.g. tetrahedron + square or triangle + octahedron)

Edge-transitive binodal nets

These form the basis for structures formed by joining two shapes by one kind of link.

O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Acta Cryst. A62, 350-355 (2006)

Edge-transitive 3-periodic nets
11rs 20
$21 r s 13$ binary versions of above >34 others

Note:
These are nets that have embeddings with edge lengths equal to the shortest distance between vertices.
Without this restriction there are infinitely many

Edge-transitive binodal nets

flu-a $o / z=6$

$\mathbf{a l b} \mathbf{- a} o / z=2$

$\mathbf{f t w}-\mathbf{a} o / z=4$

Possible ways of linking polyhedra with full symmetry

Order of a symmetry group = number of symmetry operations

group 4 order is 4
$1 / 4$ turn
$1 / 2$ turn
$3 / 4$ turn
full turn (identity)

Group 2/m
order 4
$1 / 2$ turn
reflection inversion identity

group 23
four 3-fold rotation axes (symmetry elements) eight three fold rotations (symmetry operations)
three 2-fold rotations
three 3-fold rotations
identity

Total operations $=12=$ order of group

In a periodic structure
number of points (atoms) pf a given kind in primitive cell multiplied by the order pf symmetry at that site
$=$ order of the point group (class) of the apace group

In a bipartite structure $A_{n} B_{m}$
number of atoms x coordination number $=$ constant

Edge-transitive binodal nets

flu-a $o / z=6$

$\mathbf{a l b} \mathbf{- a} o / z=2$

$\mathbf{f t w}-\mathbf{a} o / z=4$

Possible ways of linking polyhedra with full symmetry

Why not
square (symmetry 4/mm order 16) and eqilateral triangle (symmetry $-6 m 2$, order 12)?

Answer -6 only compatible with hexagonal $4 / \mathrm{mmm}$ only cubic or tetragonal.

Highest possible symmetry for triangular coordination in cubic system is $3 m$ or 32 (order 6). So:
Triangle - square combination maximum symmetry order is 6-8

Edge-transitive binodal nets

triangle - square; order 6-8
this is the order of
\longleftarrow the point symmetry of the vertices
the $\mathrm{Pt}_{3} \mathrm{O}_{4}$ net, pto

the augmented structure pto-a

Edge-transitive binodal nets

triangle - square: order 6-8

the "twisted boracite" net tbo $\mathrm{Fm}-3 m$

the augmented structure tbo-a

Edge-transitive binodal nets

triangle - tetrahedron: order 6-8

the boracite net
bor, $P-43 m$

the augmented structure
bor-a

Edge-transitive binodal nets

triangle - tetrahedron: order 3-4

The " $\mathrm{C}_{3} \mathrm{~N}_{4}$ " net ctn, $I-43 d$

the augmented structure ctn-a

Edge-transitive binodal nets

$$
\text { square - tetrahedron: order } 8-8
$$

the PtS net
pts $\mathrm{P}_{2} / m m c$
the augmented structure pts-a

Although the full symmetry of a tetrahedron, $-43 m$ and that of a square $4 / \mathrm{mmm}$ are both compatible with cubic symmetry, there is no space group with both sites of both symmetries.

It is probably not possible, even in lower symmetry, to have square and regular tetrahedral coordination in any 4-c net.

Edge-transitive binodal nets

> triangle - octahedron: order 3-6

the pyrite $\left(\mathrm{FeS}_{2}\right)$ net pyr Pa-3

the augmented structure pyr-a

Edge-transitive binodal nets

The pyr structure is naturally self dual transitivity 2112. Tiles $2\left[6^{3}\right]+\left[6^{6}\right]$

two fully catenated pyr nets
tiling

triangle - octahedron: order 4-8 the rutile structure symmetry $P 4_{2} / \mathrm{mnm}$

rtl

rtl-a
although the vertices here have higher site symmetry than in pyr, this is not an edge-transitive structure

> triangle - octahedron: order $4-8$ the anatase structure symmetry $I 4_{1} /$ amd

although the vertices here have higher site symmetry than in pyr, this is not an edge-transitive structure

Edge-transitive binodal nets
square - octahedron: order 8-12

soc $I m-3 m$

SOC-a

Edge-transitive binodal nets
square - hexagon: order 8-12

she

the augmented structure she-a

Edge-transitive binodal nets

a fragment normal to [111]
the same fragment down [111]
tetrahedron - octahedron: order 4-6 augmented garnet net: gar-a. symmetry Ia-3d
 down [111]
the garnet structure is notoriously difficult to illustrate!

Edge-transitive binodal nets

trigonal prism - octahedron: order 12-12
 NiAs nia, symmetry $\mathrm{Pb}_{3} / m m c$

nia

The green balls (" Ni ") are in trigonal prismatic coordination and at the points of a hexagonal lattice.
The red balls ("As") are in octahedral coordination and arrangeds as in hexagonal closest packing.

Edge-transitive binodal nets

square - cube 8-16

tetrahedron - cube 24-48
flu-a
Fm-3m

Edge-transitive binodal nets - summary 1

Edge-transitive binodal nets - summary 2

the-a

SOC-a

ttt-a

she-a

pts-a

stp $=\mathbf{a}$

Edge-transitive binodal nets - summary 3

Edge-transitive binodal nets - summary 4

ith-a

ocu-a

twf-a

alb-a

nia-a

mgc-a

oops

forgot $(24,3)$-connected rht (shown here as rht-a)

Results of enumerating face-transitive tilings

Table 1. Edge-transitive nets retrieved in this study listed by size of the Delaney-Dress symbol (D-symbol) of the proper tiling with smallest size. The 3-letter symbols are the RCSR (http://rcsr.anu.edu.au/) symbols.

Nets with three kinds of vertex. Here must be at least two kinds of adge, e.g. A-B and A-C. many such have emerged in MOFs in the last few years.
For example a tritopic linker joined to two different SBUs

There are probably too many for systematic enumeration?

net agw

 shown as augmented net $\mathbf{a g w}$-a3-c node connected to one 6-c and two 4-c nodes

Net asc with transitivity 32 shown in augmented form asc-a tetrahedral node linked to 2 triangular and 2 tridonal prismatic nodes.

Another example with minimal transitivity $32 r s$

The net ntt with transitivity $32 r s$
shown in augmented form $\mathbf{n t t}-\mathrm{a}$.

Note the balls with 24 magenta triangles linked to a common green triangle. The $(3,24)$-c net is edge transitive rht

The net zyg with transitivity $32 r s$. Note that the four triangle group is non-planar in contrast to previous (ntt) but same proportion of 3-c and 4-c nodes.

The net tfe with transitivity 3223 shown in augmented form $\mathbf{t f e}$-a

Note that the groups of four triangles are not co-planar
this has a different ratio of 3-c to 4-c vertices

mco (ransitivity 4 3) shown in augmented form

This is $\mathbf{x b o}$ the net of the dual ting of fte (previous slide. black and blue vertices are $6-\mathrm{c}$, red is $12-\mathrm{c}$ These are the atom positions in perovskite ABX_{3} (X is blue) e.g. SrTiO_{3}. Nodes are in fixed positions of $\mathrm{Pm}-3 \mathrm{~m}$:
Black 0, 0, 0
blue $1 / 2,0,0$
red $1 / 2,1 / 2,1 / 2$

Two links: blue - red and
blue - black whose lengths must be in the ratio $1: \sqrt{ } 2$.
i.e. can't be made with any other ratio (such as equal)

Derived nets. E.g. replace a 4-c node by two 3-c nodes Must be A-A and A-B links. Minimal transitivity $22 r s$

nbo-b

fof

fog

Replace one half 4-c nodes of nbo (red) with to 3 -c nodes (red) to produce nets like fof and fog with transitivity $22 r s$.

pts - derved nets - splitting tetrahedron

pts - derved nets - splitting square

Minimal nets (genus 3). There are 15, of which 7 have collisions. The collision-free nets are:

pcu self-dual net of P

tfa dual is dia

tfc dual is pcu

cds self-dual net of CLP

srs self-dual net of G

hms self-dual net of H

ths dual is dia
C. Bonneau et al. Acta Cryst A 60, 517 (2004). A. Beukemann \& W. E. Klee, Z. Krist. 201, 37 (1992).

a minimal net with collisions.

Vertex-transitive naturally self-dual nets (nets with self-dual natural tilings):

srs	1111
dia	1111
pcu	1111
cds	1221

These account for most topologies found in crystal structures based on interpenetrating nets.
$\sim 80 \%$ see V. A. Blatov et al. CrystEngComm. 2004, 6, 377.
These are all minimal (genus 3) nets

CdSO_{4} net

Aspects of the CdSO_{4} net: A self-dual minimal net. Labyrinth of CLP surface. Transitivity 1221.

Two interpenetrating CdSO_{4} nets

natural tiling [$6^{2} .8^{2}$]

Aspects of the ThSi_{2} (ths) net, symmetry $I 4_{1} /$ amd

Net with unit cell

Natural tiling [10^{4}] transitivity 1211

red faces are not formed by strong rings

Dual tiling is diamond tiled by half-adamantane tiles. Transitivity 1121

Self-dual tiling of ths. Transitivity 1221 (not natural)

As the net of a rod packing (ths-z)

Simple nets for 5-coordination. Vertex figure must be square pyramid or trigonal bipyramid. Must be at least two kinds of edge.

bnn transitivity 1221

sqp transitivity 1222

transitivity 1222
what about 9-c nets? Again must have at least two kinds of link. There are three $9-\mathrm{c}$ nets with transitiity $12 r s$. The most symmetrical is ncb

ncb-a

coordination figure is tricapped trigonal prism

Many isoreticular MOFs XiaoMing Chen group Nature Comm., 3, 642 (2012)

Aspects of the SrAl_{2} (sra) net, symmetry Imma The simplest way of linking ladders

sra-c, symmetry Cmma

tiling, 1331 (not self-dual)
tile is an expanded

version of adamantane with 4 inserted edges

simple nets formed by linking helices and ladders.

helices

ladders

P6mmm; bnn; $d / I=$ free

$P 4 \mathrm{mmm} ; \mathrm{pcu} ; d / I=$ free

3

$P 6_{2}$ 22; qzo; $d / I=$ free

$P 622$; qzd; $d / l=$ free

the invariant rod (cylinder) packings as nets JACS 2007, 127, 1504

Nets of parallel layer rod packings. symmetries (a) $P 6_{2} 22$
(b) $I 4_{1} / a m d$ (c) $P 6_{2} 22$ (d) $P 4_{2} / m m c$

Example of a tetragonal - hexagonal pair pts-a ($P 4_{2} / m m c$) pth-a $\left(P 6_{2} 22\right)$

Nets of simple tilings (duals of tlings by tetrahedra)
There are 9 vertex-transitive simple tilings (Delgado, Huson) We have met sod (sodalite) already. Some of the others are important zeolite nets:

rho

fau (faujasite)

lta

Nets as tilings of minimal surfaces. On the left $4^{3} .6$ tilings of P, D and G surfaces.
On the right as tilings E^{3}.

The epinet project epinet.anu.edu.au of S. T. Hyde et al. derives net as projections from H^{2} onto P, G, and D.

There are two distinct 3^{2}.4.3.6 tilings of G
One of these (fcz) is the underlying topology of a germanium oxide with a giant unit cell ($a=53 \AA$) X. Zou, T Conradsson. M. Klingstedt. M. S. Dadachov, M. O'Keeffe, Nature, 437, 716 (2005)
examples 3.4^{4} tilings of P surface - an infinite family but only pcu-i is vertex transitive (recall two polyhedra 3.43)

mjz

mjy
for MOF with $\mathbf{m j z}$ structure see M. J. Zaworotko, J. Am. Chem. Soc. 129, 10076 (2007)
vertex transitive high-coordination sphere packings
12-coordinated (2)
fcu, hep
11-coordinated (6) ela, elb, elc, eld, ele, elf

10-coordinated (14)
bct, cco, chb, feb, gpu, mob, tca,
tcc, tcd, tce, tcf, tcg, tch, tci

12-coordinated sphere packings (closest packings) and 6-coordinated relatives in RCSR
c 12-c goes to octahedral 6-c
h 12-c goes to trigonal prismatic 6-c

	$12-c$	$6-c$	
c	fcu	pcu	
h	hcp	acs	
$h c$	tcj	nia	(NiAs)
$h c c$	tck	sta	
$h h c$	tcl	stb	
$h h c c$	tcm	stc	

Fie. 6.1. Part of a layer of close-packed spheres. A marks the corners of a unit cell.
A h layer has similar layers both sides as in the sequence $A \boldsymbol{B} A$
A c layer has different layers both sides as in the sequence $A \boldsymbol{B C}$

h $A B . .$. (i.e. $A B A B A B . . .$.
c $A B C \ldots$ (i.e. $A B C A B C \ldots$...)
hc $A B A C$ (i.e. $A B A C A B A C . . .$.
hcc $A B A C B C$

how many 3-periodic structures are there?

minimal-density vertex-transitive sphere packings:

> 49 3-coordinated*
> ~ 160 4-coordinated probably ~ 2000 in total

For symmetry P6/mmm and 6 kinds of vertex, there are $18,400,408$ nets that are potential zeolite frameworks. Treacy \& Foster, 2004
The most complicated zeolite has 99 kinds of vertex.

* Koch \& Fischer, 1995 (+ 2005)

Infinite families of nets

2-D example. Symmetry p4mm one vertex / unit cell bonded to vertex in cell u, v
i.e. links to vertices at $\pm u, \pm v ; \pm v, \pm u$. (8-coord)

So a lot of possible nets...

But < 100 edge transitive with edges as shortest distances

Interpenetrating nets
in special cases there are extra symmetry elements
these can be extra translations Class I
or point operations such as inversion Class II
or both Class III

Recent reference on embeddings of interpenetrating nets
Bonneau, C.; O’Keeffe, M. Acta Cryst. A 2015, 71, 82

The srs net is chiral (symmetry $I 4_{1} 32$). The dual is the enantiomorph. Here two srs nets of opposite hand are intergrown to form a centrosymmetric structure (symmetry Ia-3d). The surface separating the two nets is the G minimal surface (gyroid)
interpenetrating srs nets (symmetry $I 4_{1} 32$) in RCSR
(a) net has full symmetry

srs-c $\quad I a-3 d$	one L and one R	inversion
srs-c4 $P 4_{2} 32$	four L or four R	translation
srs-c8 $I 432$	eight L or eight R	rotation
srs-c54 $I a-3 d$	$27 L$ and $27 R$	

(b) net has lower symmetry
srs-c2* $\mathrm{P}_{4} 22 \quad$ two L or two R
srs-c3 $\quad I 4_{1} 32 \quad$ three L or three R
srs-c4* $P 4_{2} / n b c \quad$ two L and two R

srs-c8 symmetry $I 432$
8 vertices in cubic cell, 4 in primitive cell

one can have 54 full-symmetry srs nets interpenetrating (27 left and 27 right). this shows one unit cell (Ia-3d) Actually made! Wu, H., Yang, J., Su, Z.-M., Batten, S, R. \& Ma, J.-F. (2011). J. Am. Chem. Soc. 133, 11406-11409 Each ring catenated with 634 others!
diamond (dia) symmetry $F d-3 m$ two vertices in primitive cell
dia-c symmetry $P n-3 m$
two vertices in primitive cell
two nets related by translation

dia-c symmetry $P n-3 m$ two vertices in primitive cell rings are catenated two nets related by translation

Cuprite $\left(\mathrm{Cu}_{2} \mathrm{O}\right)$ - one of the very first crystal structures Bragg (1915)

Note the two nets related by a unit cell edge (a translation)

Blue spheres are Cu at vertices of dia nets
 edges are -O- links (O red)

Showing one $\mathrm{Cu}_{6} \mathrm{O}_{6}$ ring in $\mathrm{Cu}_{2} \mathrm{O}$ catenated with 6 others

Multiple dia nets related by translation

Table 1. Crystallographic Data for the Ideal Geometry of N-Fold Interpenetrated Diamond Nets

see dia-3*, dia-c4, dia-c6 in RCSR.
Primitive cell in each case contains 2 vertices
F. Uribe-Romo, M. O'Keeffe, O. M. Yaghi, et al. J. Am. Chem. Soc. 131, 4570 (2009)

Interpenetrating quartz (qtz) nets - non-intersecting edges
"ideal" qtz net $P 6_{2} 22\left(\right.$ or $\left.P 6_{4} 22\right) a=a_{q}=\sqrt{ }(8 / 3), c=c_{q}=\sqrt{ } 3$
a. qtz-n, n not a multiple of 3 , related by translations along c $a=a_{q}, c=c_{q} / n$
b. $\mathbf{q t z} \mathbf{- n}, n=3$, related by translations along a.
$a=a_{q} / \sqrt{ } 3, c=c_{q}$
c. qtz-n, $n=3$ times (not a multiple of 3),
related by translations along a and c
$a=a_{q} / \sqrt{ } 3, c=3 c_{q} / n$
possibilities for $n: 2(\mathrm{a}), 3(\mathrm{~b}), 4(\mathrm{a}), 5(\mathrm{a}), 6(\mathrm{c}), 7(\mathrm{a}), 8(\mathrm{a}), 9$ (not possible)

note that space group changes "hand", not the net!

The tile faces are essential rigs. In $\mathbf{q t z}$ other 8-rings (c) are sums of essential ring (a) and (b)

qtz - view down \mathbf{c} $P 622$

qtz-c3 - view down c
$P 622$, $a^{\prime}=a / \sqrt{ } 3$
nets related by \mathbf{a}^{\prime}

example of qtz-c6 (both modes of interpenetration)

$\mathrm{Co}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{2}$ S. C. Abrahams et al. J. Chem. Phys. 76, 5458 (1982)

note that ths has a natural tiling [10^{4}]. So dual is 4 -coordinated and is in fact dia. But the dual tile must have only 3 faces and is the "half-adamantane"tile [62.8]

cds is naturally self-dual
cds $P 4_{2} / m m c$
cds-c $P 4_{2} / \mathrm{mcm}$.
$a^{\prime}=a / \sqrt{ } 2$
nets related by a^{\prime}

An oddity: a self-dual tiling of fcu symmetry Pa-3 transitivity 1111

two interpenetrating fcu nets with bent edges, symmetry Ia-3

Borromean

red > green green $>$ blue blue $>$ red

etc-c3 discussed first by S. T. Hyde et al.
[Austr. J. Chem. 56, 981, (2003)]

A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface
 Jackie Y. Ying ${ }^{\star}$

Nature Chemistry 1, 123 (2009)

Example of 2D nets -> 3D structure "polycatenation"

The net jcy formed by linking hcb-c3. Every ring in the structure is catenated with others ("self-catenated"). occurs in a MOF. M.O' Keeffe, banglin chen et al. Angew. Chem. Int. Ed. 2012, 51, 10542.

The net fnu. has all 6-rings (8 per vertex (dia has 2 per vertex) vertex symbol $6_{3} \cdot 6_{3} \cdot 6_{3} \cdot 6_{3} \cdot 6_{3} \cdot 6_{5} \cdot 6_{5} \cdot 6_{5} \cdot 6_{7} \cdot{ }_{7} \cdot 6_{7}$ Note some are catenated 9e.g. magenta and green Bu not all rings independent magenta is sum of three others. So...

It turns out that fnu has a natural tiling

- so the essential rings are not catenated -so net is not self-catenated?

Blatov, V. A.; Delgado-Friedrichs, O., O’Keeffe, M. \& Proserpio, D. M. (2007). Acta Cryst. A63, 418-425.
nets as surfaces - minimal surfaces
periodic minimal surface (PMS) divides space into two parts. The surface has zero mean curvature $\left.\left(k_{1}+k_{2}\right)=0\right)$, but negative Gaussian curvature ($k_{1} k_{2}<0$). There are 5 PMS of genus 3. They divide two interpenetrating nets of genus 3

net	transitivity	surface
srs	1111	G
dia	1111	D
pcu	1111	P
cds	1221	$C L P$
hms	2222	H

Two interpenetrating pcu nets

The P minimal surface separates the two nets. Average curvature zero Gaussian curvature neg.
don't confuse two usages of the term "minimal"
Minimal surface has zero mean curvature $\left.\left(k_{1}+k_{2}\right)=0\right)$
Minimal net has genus $=3$.
There are 5 Periodic Minimal Surfaces of genus 3 but more than five nets of genus 3
nets as surfaces:
the chambers of a tile for a net has vertices on the net and at the center of the tile. If the chambers are considered a tiling, the dual tiling has vertices in the centers of the chambers. I.e. between the net and its dual. We call such a net (derived from $\mathbf{x y z}$) xyz-t.

Minimal nets (genus 3). There are 15, of which 7 have collisions. The collision-free nets are:

pcu self-dual net of P

tfa dual is dia

tfc
dual is pcu

cds self-dual net of CLP

srs self-dual net of G

hms self-dual net of H

ths dual is dia

Reminder: periodic minimal surface have positive and negative curvature (or flat points) everywhere

The mean (average) curvature is zero
Reference
Delgado et al Acta Cryst. A69, 483 (2013)

We can construct a tiling that approximates a surface associated with a net as follows.
For a net say dia find the tiling (see below) and then find its chambers (blue and yellow below).
Now use the chambers as a tiling.
Now find the dual. The vertices of the dual are in the centers of the chambers. I.e. on the surface separating the original net from its dual.

diamond tile

The answer is that more than one net may be the labyrinth of a given minimal surface!

$$
\begin{aligned}
& \text { nets } \leftrightarrow \text { surfaces } \\
& \text { many } \leftrightarrow \text { one }
\end{aligned}
$$

tfc \rightarrow pcu

pcu-t $=$ rho

tfc-t
clearly surfaces of the same topology
\leftarrow adamantane unit

dia-t = fuf

tfa-t

ths-t
again surfaces of the same topology

Note: that G is the surface of most 3-periodic mesoporous materals (a few are D). but....

bcu-t $=$ nbo-t surface is the $I W P$ minimal surface of genus 4

Summary. Most important minimal surfaces
All minimum surfaces of genus 3
$P \quad$ net pcu (also tfc)
$D \quad$ net dia (also tfa, ths)
G net srs
H net hms
$C L P$ net cds
Genus 4

IWP nets nbo/bcu

Nets with collisions (unstable nets) and crystal chemistry

Olaf Delgado-Friedrichs, ${ }^{\text {a }}$ Stephen T. Hyde, ${ }^{\text {a }}$ Shin-Won Mun, ${ }^{\text {b }}$ Michael O'Keeffe ${ }^{\text {b,c* }}$ and Davide M. Proserpio ${ }^{\mathrm{d}, \mathrm{e}}$

Acta Crystallographica Section A
Foundations of
Crystallography
ISSN 0108-7673

Received 5 June 2013
Accepted 25 July 2013

If we take net of all atoms, paddlewheel has collisions

example of a ladder. Note uninodal 4-c net

a minimal net with collisions.

two intwrpwnwtrating diamonds linked.

If the blak links go to zero length, vertices collide, symmetry is higher arrangement of points same as in $\mathrm{CaF}_{2}(\mathbf{f l u})$

net mhq

A (3-4)-c edge-transitive net (Blatov, Sun et al.).
Embeddin in F432. In P432 a' - a/2) vertices collide

Two quotient graphs that are labelled $\mathrm{K}_{3,4}$.
Graphs are edge-transitive

end

