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Enumeration and classificaion of crystal nets	


	





Taxonomy of nets and tilings: Classification by transitivity	


	

Tiling a surface	


	

    1. Tiling of sphere (polyhedra, 0-periodic)	


	

    2. Tiling of cylinder (1-periodic nets)	


	

    3. Tiling of plane (2-periodic nets)	


	

transitivity:    111 regular	


	

                      112 quasiregular	


	

                      21r  other edge transitive 	



	


	

Tiling of space (3-periodic nets)	


	

transitivity:    1111 regular	



            	

          1112 quasiregular 	

	


	

                      11rs  semiregular	


	

                      21rs  other edge transitive	



	





Reminder	


	


2-D tilings: transitivity = pqr	


p kinds of vertex	


q kinds of edge	


r kinds of face (2-D tile)	


	


3-D tilings: transitivity = pqrs	


p kinds of vertex	


q kinds of edge	


r kinds of face	


s kinds of tile	


	





There are infinitely many polyhedra and nets	


with one kind of vertex. But...	


	


	


The are only a small number with one kind of edge	


	


This has important implications for chemistry	





All edge-transitive polyhedra – tilings of S2	



regular: transitivity 111	



quasi-regular: transitivity 112	


duals of quasi-regular:	



transitivity 211	





All possible ways of linking polygons with one 	


kind of link to form 0-periodic structures	



Augmented (truncated) edge-transitive polyhedra	





The only family of edge-transitive tilings of cylinder	



regular cylinder tiling:	


transitivity 111	



The augmented structure: The	


only 1-periodic structure of	


polygons joined by equal links	



special case	





hexagonal lattice 111    square lattice 111       honeycomb 111	



kagome 112 (quasiregular)                  kagome dual 211	



all edge-transitive 2-periodic nets	





All possible ways of linking polygons with one 	


kind of link to form 2-periodic structures	



augmented regular nets	



augmented quasiregular	

 augmented dual of quasiregular	





Summary of tiling 2-surfaces. All edge-transitive structures	


	


Sphere -> 111 = 5 regular polyhedra	


                 112 = 2 quasiregular polyhedra            9	



	

     211 = 2 duals of above	


                                                                                           	


Plane -> 111 = 3 regular nets                                           15	


               112 = 1 quasiregular net                         5	


               211 = 1 dual of above	


	


cylinder->111 one family 	

 	

 	

       1	


	


So there aren’t too many	


(but if we include hyperbolic surfaces the number becomes 	


infinite – S. T. Hyde).	





Regular 3-periodic nets

Vertex (coordination) figure is a regular polygon or polyhedron

As the net is periodic, the vertex figure can only have
crystallographic symmetry (1-, 2-, 3-, 4- or 6-fold rotations)
So possibilities are

1. triangle
2. square
3. tetrahedron
4. octahedron
5. cube

(hexagon cannot lead to a 3-D structure as all 6-fold axes must be parallel)

There is only one possibility in each case → 5 regular nets	





Start with one node linked to three others	





add next neighbors	





and next	





etc…	





It turns out that:	


	



regular nets have 	


transitivity 1111	



	


For natural tilings there are no more with 

transitivity 1111 	


(this is rather nice)	





natural tiling [103]	



srs (the SrSi2 net)	

 the augmented net srs-a	



skeleton of tile with dual (self)	



vertex figure: triangle	





A Crystal that Nature May Have Missed 
 
                                     K_4 crystal.  Created by Hisashi Naito. 
  
January 3, 2008 
Providence, RI: For centuries, human beings have been entranced by the 
captivating glimmer of the diamond. What accounts for the stunning 
beauty of this most precious gem? As mathematician Toshikazu Sunada 
explains in an article appearing today in the Notices of the American 
Mathematical Society, some secrets of the diamond's beauty can be 
uncovered by a mathematical analysis of its microscopic crystal 
structure. It turns out that this structure has some very special, 
and especially symmetric, properties. In fact, as Sunada discovered, 
out of an infinite universe of mathematical crystals, only one other 
shares these properties with the diamond, a crystal that he calls the 
"K4 crystal". It is not known whether the K4 crystal exists in 
nature or could be synthesized. 

"K4" = srs which is ubiquitous in nature from the structure 
 of high-pressure nitrogen to butterfly wings 



A light read on srs	


	


Hyde, S. T.; Proserpio, D. M.; O’Keeffe, M.	


	


A short history of an elusive, yet ubiquitous	


structure in chemistry,  materials, and	


mathematics. 	


	


Angew. Chem. Int. Ed. 2008, 47, 7996.	





The srs net is chiral (symmetry I4132).	


The dual is the enantiomorph. Here two srs nets of 
opposite hand are intergrown to form a centrosymmetric 
structure (symmetry Ia-3d). The surface separating the 
two nets is the G minimal surface (gyroid)	





Alan Schoen's gyroid – periodic minimal surface G	



Fragments of 	


two srs nets	



The same	


"blown up"	



A "tile" of	


the G surface	





A minimal surface has positive 
and negative principal curvatures, 
k1 and k2. For minimal surface:	


	


Mean curvature = (k1 + k2)/2 = 0 	


Gaussian curvature k1k2 <  0	



G surface of Alan Schoen in 1970	


	


bicontinuous surfactant/water	


phases => 	


mesoporous silicates, etc	





the gyroid is a surface !	





vertex figure: square	



The nbo net 	



augmented net	



nbo-a	



natural tiling	



[68]	



dual is 8-coordinated	



 bcu net (bcc, blue)	





vertex figure: tetrahedron	


dia (diamond) net	



augmented net	


dia-a	



tiling	


[64]	



tile with dual	


(self dual)	



D minimal surface separates two dia nets	





Red is skeleton of tile              approximation to the D	


of dia                                       surface (should be smooth)	





augmented net	


pcu-a = cab	


(B in CaB6)	



tiling	


[46]	



tile with dual	


(self dual)	



vertex figure: octahedron	


pcu (primitive cubic) net	



P minimal surface separates two pcu nets	





Two interpenetrating pcu nets	


(notice that the nets are self-dual)	



The P minimal surface	


separates the two nets.	


Average curvature zero	


Gaussian curvature neg.	





augmented net	


bcu-a = pcb	


(polycubane)	



tiling	


[44]	



tile with dual	


(dual is nbo)	



vertex figure: cube	


bcu (body-centered cubic) net	





Quasiregular net: vertex figure cuboctahedron	


fcu (face-centered cubic) net	



transitivity 1112	



augmented net	


fcu-a = ubt	


(B in UB12)	



tiling 	


(note dual has two vertices)	



2[34] + [38]	





Normal dual of the fcu net. flu  (fluorite)	


transitivity 2111	



augmented net	


flu-a	



tiling	


[412]	





              The Regular Nets. Transitivity 1111	


	


1. srs, triangle, I4132, Si net of SrSi2              (self-dual)	


2. nbo, square, Im-3m, all atoms of NbO    (dual = bcu)	


3. dia, tetrahedron, Fd-3m, diamond net        (self-dual)	


4. pcu, octahedron, Pm-3m, primitive cubic   (self dual)	


5. bcu, cube, Im-3m, body-centered cubic  (dual = nbo)	


	


                  Quasiregular. Transitivity 1112	


	


6. fcu, cuboctahedron, face-centered cubic dual is …	


	


7. flu, cube and tetrahedron, net of fluorite (CaF2)	


                          (transitivity 2111)	


there are 14 more vertex and edge transitive nets 11rs:	



3-periodic nets. The story so far:	





What 11rs structures are there?	



1111 5 regular	



1112 1 quasiregular	



11rs 14 semiregular    	



(these have embeddings in 
which there is no inter-vertex 
distance shorter than edges )         	





The augmented regular, quasiregular, and	


semiregular nets are ways of linking	


polygons or polyhedra with one kind of link.	





augmented semiregular nets -1	





augmented semiregular nets -2	





Default structure for linking trigonal prisms: acs trans 1122	



augmented net acs-a	

 tiling	


2[43] + [43.62]	



dual [66]	


(not natural)	



more of the dual tiling	


the net is gra (graphite)	



lns (lonsdaleite)	


dual of gra (graphite)	


using natural [64] tiles	



Half this tile	


is the natural	


tile for graphite.	


Dual of this is	


a 4-coordinated	


structure:	


	





graphite	


yellow “bonds’ are	


shortest distances	


between layers	


	


The net gra is	


(3,5)-c	





Default structure for linking hexagons hxg 	


Symmetry Pn-3m. Transitivity 1121. 	



the augmented net	


hxg-a = pbz	



(polybenzene)	



natural tile [46.64]	

 dual [46]	





Digression: we can use the hxg tiles to build models of 	


minimal surfaces. In each of the two models below, the filled	


and empty spaces are the same and the surface separating the	


two surfaces are the D and P minimal surfaces	



D surface. The lines	


are edges of an hxg net	



P surface	





the net sod, symmetry Im-3m with transitivity 1121	


	


	


atomic positions	


1/2, 1/4, 0 etc	


	


"imvariant lattice complex" W*	



tiling has transitivity 1121	


simple tiling	





Cubic invariant lattice complexes. O'K&H p. 281	


  International Tables for Crystallography, Vol. A	



fcu!
bcu!
reo!
lcs!
crs!
lcy!
lcy!
dia!
lcv!
lcv!
nbo!
sod!
lcs!
srs!
srs!
srs-c!
lcw!

RCSR symbol       lattice complex   space group                                       coordination	



F        Fm-3m   4 a 	

          12	

	


I         Im-3m    2 a 	

           8	


J        Pm-3m    3 c 	

          8	


S         I-43d     12 a or 12 b         8	


T        Fd-3m     16 c or 16 d        6	


+Y      P4332      4 a                      6	


-Y       P4132      4 a                      6	


D       Fd-3m     8 a or 8 b            4	


+V      I4132       12 d                    4	


-V       I4332       12 d                    4	


J*      Im-3m      6 b                      4   	


W*    Im-3m      12 d                    4	


S*      Ia-3d       24 c                    4	


+Y*    I4132       8 a                      3	


-Y*     I4132       8 b                      3	


Y**    Ia-3d       16 b                    3	


W       Im-3m      6 c or 6 d           2	





Structures based on edge-transitive nets with two kinds of vertex	


(transitivity 21rs)	



These are of two kinds	


	


1. Structures based on coloring of nets with one kind of vertex	


(e.g. the NaCl structure is derived from pcu (primitive cubic)	


by alternating Na and Cl at the vertices.	


	


2. Structures in which the vertices have different vertex figures	


(e.g. tetrahedron + square or triangle + octahedron)	





Edge-transitive binodal nets	


	


	


These form the basis for structures	


formed by joining two shapes by	


one kind of link.	



O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Acta Cryst. A62, 350-355  (2006)	





  Edge-transitive 3-periodic nets	


	


11rs 	

 20	


21rs 	

 13 binary versions of above	



	

>34 others	


	


Note:	


These are nets that have embeddings with edge 	


lengths equal to the shortest distance between 	


vertices.	


Without this restriction there are infinitely many	





Possible ways of linking	


polyhedra with full symmetry	



flu-a o/z = 6	

 ftw-a o/z = 4	



alb-a o/z = 2	



Edge-transitive binodal nets	





Order of a symmetry group =	


number of symmetry operations	


	


group 4 order is 4	


	


¼ turn	


½ turn	


¾ turn	


full turn (identity)	





Group 2/m	


	


order 4	


	


½ turn	


reflection	


inversion	


identity	





group 23	


	


four 3-fold rotation axes (symmetry elements)	


eight three fold rotations (symmetry operations)	


	


three 2-fold rotations	


three 3-fold rotations	


	


identity	


	


Total operations = 12 = order of group	





In a periodic structure	


	


number of points (atoms) pf a given kind in primitive cell	


multiplied by the order pf symmetry at that site	


	


= order of the point group (class)  of the apace group	


	


	


In a bipartite structure AnBm	


	


number of atoms x coordination number = constant	





Possible ways of linking	


polyhedra with full symmetry	



flu-a o/z = 6	

 ftw-a o/z = 4	



alb-a o/z = 2	



Edge-transitive binodal nets	





Why not	


 square (symmetry 4/mm order 16) and	


  eqilateral triangle (symmetry -6m2, order 12)?	


	


Answer -6 only compatible with hexagonal	


4/mmm only cubic or tetragonal.	


	


Highest possible symmetry for triangular	


coordination in cubic system is 3m or 32 (order 6). 	


So:	


Triangle – square combination maximum 	


symmetry order is 6-8	


	


	





the Pt3O4 net, 	


pto	



the augmented structure	


pto-a	



triangle - square; order 6 - 8	


this is the order of	


the point symmetry	


of the vertices	



Edge-transitive binodal nets	





the “twisted boracite” net	


tbo Fm-3m	



the augmented structure	


tbo-a	



triangle - square: order 6 - 8	



Edge-transitive binodal nets	





triangle - tetrahedron: order 6 - 8	



the boracite net	


bor, P-43m	



	



the augmented structure	


bor-a	



Edge-transitive binodal nets	





triangle - tetrahedron: order 3 - 4	



The “C3N4” net	


ctn, I-43d	



	



the augmented structure	


ctn-a	



Edge-transitive binodal nets	





the PtS net	


pts P42/mmc	



the augmented structure	


pts-a	



square - tetrahedron: order 8 - 8	



Edge-transitive binodal nets	





Although the full symmetry of a tetrahedron, -43m	


and that of a square 4/mmm are both compatible	


with cubic symmetry, there is no space group with	


both sites of both symmetries.	


	


It is probably not possible, even in lower symmetry,	


to have square and regular tetrahedral coordination	


in any 4-c net.	





triangle - octahedron: order 3 - 6	



the pyrite (FeS2) net	


pyr Pa-3	



the augmented structure	


pyr-a	



Edge-transitive binodal nets	





The pyr structure is naturally self dual	


transitivity 2112. Tiles 2[63] + [66]	



tiling	

two fully catenated pyr nets	



Edge-transitive binodal nets	





triangle - octahedron: order 4 - 8	


the rutile structure symmetry P42/mnm	



rtl	

 rtl-a	



although the vertices here have higher site symmetry than in pyr,	


this is not an edge-transitive structure	





triangle - octahedron: order 4 - 8	


the anatase structure symmetry I41/amd	



although the vertices here have higher site symmetry than in pyr,	


this is not an edge-transitive structure	



ant	

 ant-a	





square - octahedron: order 8 - 12	



soc Im-3m	

 soc-a	



Edge-transitive binodal nets	





square - hexagon: order 8 - 12	



the augmented structure	


she-a	



she	



Edge-transitive binodal nets	





tetrahedron - octahedron: order 4-6	


augmented garnet net: gar-a. symmetry Ia-3d	



a fragment	


normal to	


[111]	



the same	


fragment	


down [111]	



the garnet structure is notoriously difficult to illustrate!	



more projected	


down [111]	



Edge-transitive binodal nets	





trigonal prism - octahedron: order 12-12 	


NiAs nia, symmetry P63/mmc 	



nia	

 nia-a	



The green balls (“Ni”) are in trigonal prismatic	


coordination and at the points of a hexagonal lattice.	


The red balls (“As”) are in octahedral coordination	


and arrangeds as in hexagonal closest packing.	



Edge-transitive binodal nets	





triangle - cube 6 - 16	



the-a	


Pm-3m	



square - cube 8 - 16	



scu-a	


P4/mmm	



tetrahedron - cube 24 - 48	

 octahedron - cube 12 - 16	



flu-a	


Fm-3m	



ocu-a	


Im-3m	



Edge-transitive binodal nets	





Edge-transitive binodal nets - summary 1	





Edge-transitive binodal nets - summary 2	





Edge-transitive binodal nets - summary 3	





Edge-transitive binodal nets - summary 4	





oops	



forgot (24,3)-connected rht (shown here as rht-a)	


	





pcu only 
regular 
tiling! 

Results of enumerating face-transitive tilings	





Nets with three kinds of vertex. Here must be at least	


two kinds of adge, e.g. A-B and A-C. many such have 	


emerged in MOFs in the last few years.	


For example a tritopic linker joined to two different SBUs	



A	



B	



C	

 C	



There are probably too many for systematic enumeration?	





net agw	


shown  as	


augmented	


net agw-a	


	


3-c node	


connected	


to one 6-c	


and two 4-c	


nodes 	


	





Net asc with transitivity 3 2 shown in augmented form asc-a	


tetrahedral node linked to 2triangular and 2 tridonal prismatic nodes.	





A	



B	

 B	



B	



C	

 C	



C	

 C	



C	

C	



Another example with minimal transitivity 3 2 r s	



links AB and BC	





The net ntt with	


transitivity 3 2 r s	


	


shown in augmented	


form ntt-a.	


	


Note the balls with	


24 magenta triangles	


linked to a common	


green triangle.	


The (3,24)-c net	


is edge transitive	


rht	





The net zyg with transitivity 3 2 r s. Note that the four triangle	


group is non-planar in contrast to previous (ntt) but same	


proportion of 3-c and 4-c nodes.	





The net tfe with 	


transitivity 3223	


shown in augmented	


form tfe-a	


	


Note that the groups 	


of four triangles are	


not co-planar	


	


this has a different	


ratio of 3-c to 4-c	


vertices	





net is zxc	


<-	


	


	





net is zxc	


<-	


	


structure of	


CaCO3 ! ->	





mco (ransitivity 4 3) shown in augmented form	





This is xbo the net of the	


dual ting of fte (previous	


slide. black and blue 	


vertices are 6-c, red is 12-c	


These are the atom positions	


in perovskite ABX3 (X is blue)	


e.g. SrTiO3. Nodes are in fixed	


positions of Pm-3m:	


Black 0, 0, 0	


blue ½, 0, 0	


red ½, ½,  ½ 	


Two links: blue – red and 	


blue – black whose lengths must be in the ratio 1: √2.	


i.e. can’t be made with any other ratio (such as equal) 	





A	



A	



B	



B	



B	



B	



Derived nets. E.g. replace a 4-c node by two 3-c nodes	


Must be A-A and A-B links. Minimal transitivity 2 2 r s	





Replace one half 4-c nodes of nbo (red) with 	


to 3-c nodes (red) to produce nets like fof and fog	


with transitivity 2 2 r s.	





pts – derved nets – splitting tetrahedron	



sur-a                         pts-a                   tfk-a	


              all have transitivity 2 2 r s  	





pts – derved nets – splitting square	



dmd-a                      pts-a                   tti-a	


              all have transitivity 2 2 r s  	





Minimal nets (genus 3). There are 15, of which 7 have collisions.	


The collision-free nets are:	



C. Bonneau et al. Acta Cryst A 60, 517 (2004). A. Beukemann & W. E. Klee, Z. Krist. 201, 37 (1992).	



pcu self-dual	


net of P	



dia self-dual	


net of D	



cds self-dual	


net of CLP	



hms self-dual	


net of H	



srs self-dual	


net of G	



ths	


dual is dia	



tfa	


dual is dia	



tfc	


dual is pcu	





a minimal net with collisions.	



quotient graph	





Vertex-transitive naturally self-dual nets	


(nets with self-dual natural tilings):	


	



	

 	

srs 	

1111	


	

 	

dia 	

1111	


	

 	

pcu 	

1111	


	

 	

cds 	

1221	



	


These account for most topologies found	


in crystal structures based on interpenetrating	


nets. 	


~ 80% see V. A. Blatov et al. CrystEngComm. 2004, 6, 377.	



These are all minimal (genus 3) nets	





Aspects of the CdSO4 net:	


A self-dual minimal net.	



Labyrinth of CLP surface.	


Transitivity 1221.	



CdSO4 net	

 PtS net (edge net)	



Two interpenetrating CdSO4 nets	


natural tiling [62.82]	





Aspects of the ThSi2 (ths) net, symmetry I41/amd	



Net with unit cell	


Natural tiling [104]	


transitivity 1211	



Dual tiling is diamond 	


tiled by half-adamantane	


tiles. Transitivity 1121	



Self-dual tiling of	


ths. Transitivity	


1221 (not natural)	



As the net of a rod packing (ths-z)	



dia	

 ths	



red faces are not formed by strong rings	





Simple nets for 5-coordination. Vertex figure	


must be square pyramid or trigonal bipyramid.	


Must be at least two kinds of edge.	



bnn transitivity 1221                    sqp transitivity 1222	





cab                       cab-a	


transitivity 1 2 2 2	





what about 9-c nets? Again must have at least	


two kinds of link. There are three 9-c nets with	


transitiity 1 2 r s. The most symmetrical is ncb	



ncb-a	



coordination figure is	


tricapped trigonal prism	



Many isoreticular MOFs	


XiaoMing Chen group	


Nature Comm., 3, 642 (2012)	





Aspects of the SrAl2 (sra) net, symmetry Imma	


The simplest way of linking ladders	



dia	

 sra	

sra	



sra-c, symmetry Cmma	

 tiling, 1331	


(not self-dual)	



tile is an expanded	


version of adamantane	


with 4 inserted edges	



zig-zag ladder	





eta	

 etb	

 srs	

 lig	



sra	

 irl	

 frl	

 fry	



helices	



ladders	



simple nets formed by linking helices and ladders.	





the invariant rod (cylinder) packings as nets JACS 2007, 127, 1504	





ths-z	



cds	

qzd	



bto-z	



Nets of parallel layer rod packings. symmetries (a) P6222	


(b) I41/amd (c) P6222 (d) P42/mmc	





        Example of a tetragonal – hexagonal pair	


     pts-a (P42/mmc)                            pth-a (P6222)	





Nets of simple tilings (duals of tlings by tetrahedra)	


	


There are 9 vertex-transitive simple tilings (Delgado, Huson)	


We have met  sod (sodalite) already. Some of the others 	


are important zeolite nets:	



rho                          fau (faujasite)                         lta	





Nets as tilings of	


minimal surfaces.	


On the left 43.6 	


tilings of P, D and G	


surfaces.	


On the right as tilings	


E3.	


	


The epinet project	


epinet.anu.edu.au	


of S. T. Hyde et al.	


derives net as 	


projections from H2	


onto P, G, and D.	





There are two distinct 32.4.3.6 tilings of G	



One of these (fcz) is the underlying topology of a germanium oxide with a giant unit cell (a = 53 Å)	


X. Zou, T Conradsson. M. Klingstedt. M. S. Dadachov, M. O'Keeffe, Nature, 437, 716 (2005)	





examples 3.44 tilings of P surface - an infinite family	


but only pcu-i is vertex transitive	


(recall two polyhedra 3.43)	



for MOF with mjz structure see M. J. Zaworotko, J. Am. Chem. Soc. 129, 10076 (2007)	





vertex transitive high-coordination sphere packings	


	


12-coordinated (2)	


fcu, hcp	


	


11-coordinated (6)	


ela, elb, elc, eld, ele, elf	


	


10-coordinated (14)	


bct, cco, chb, feb, gpu, mob, tca,	


tcc, tcd, tce, tcf, tcg, tch, tci	





12-coordinated sphere packings (closest packings)	


and 6-coordinated relatives in RCSR	


	


c 12-c goes to octahedral 6-c	


h 12-c goes to trigonal prismatic 6-c	


	



	

12-c 	

6-c	


c 	

fcu 	

pcu	


h 	

hcp 	

acs	


hc 	

tcj 	

nia 	

(NiAs)	


hcc 	

tck 	

sta	


hhc 	

tcl 	

stb	


hhcc 	

tcm 	

stc	





A h layer has similar layers both sides as in the sequence ABA	


	


A c layer has different layers both sides as in the sequence ABC	


	


h AB… (i.e. ABABAB….)	


c ABC… (i.e. ABCABC….)	


hc ABAC (i.e. ABACABAC….)	


hcc ABACBC	





how many 3-periodic structures are there?	


	



minimal-density vertex-transitive sphere packings:	


	



49 3-coordinated*	


~160 4-coordinated	



probably ~2000 in total	


	



For symmetry P6/mmm and 6 kinds of vertex, there	


are 18,400,408 nets that are potential zeolite frame-	


works. Treacy & Foster, 2004	


The most complicated zeolite has 99 kinds of 	


vertex.	


* Koch & Fischer, 1995 (+ 2005)	





Infinite families of nets	


	



2-D example. Symmetry p4mm	


one vertex / unit cell bonded to vertex in cell u, v	


i.e. links to vertices at ±u, ±v ; ±v, ±u. (8-coord)	





So a lot of possible nets...	


	


But < 100 edge transitive with edges as	


shortest distances	





Interpenetrating nets	


	


in special cases there are extra symmetry elements	


	


these can be extra translations Class I	


	


or point operations such as inversion Class II	


	


or both Class III	


	


Recent reference on embeddings of interpenetrating nets	


	


Bonneau, C.; O’Keeffe, M. Acta Cryst. A 2015, 71, 82	





The srs net is chiral (symmetry I4132).	


The dual is the enantiomorph. Here two srs nets of 
opposite hand are intergrown to form a centrosymmetric 
structure (symmetry Ia-3d). The surface separating the 
two nets is the G minimal surface (gyroid)	





interpenetrating srs nets (symmetry I4132) in RCSR	


	


(a) net has full symmetry	


	


srs-c 	

 Ia-3d 	

 	

one L and one R 	

inversion	


srs-c4 	

P4232 	

 	

four L or four R 	

translation	


srs-c8 	

I432 	

 	

eight L or eight R 	

rotation	


srs-c54  Ia-3d 	

 	

27 L and 27 R 	

 	

	


	


(b) net has lower symmetry	


	


srs-c2* P4222	

 	

two L or two R	


srs-c3 	

 I4132 	

 	

three L or three R	


srs-c4* P42/nbc 	

two L and two R	





srs-c8 symmetry I432	


8 vertices in cubic cell, 4 in primitive cell	





one can have 54 full-symmetry srs nets interpenetrating	


(27 left and 27 right). this shows one unit cell (Ia-3d)	


Actually made! Wu, H., Yang, J., Su, Z.-M., Batten, S, R.	


 & Ma, J.-F. (2011). J. Am. Chem. Soc. 133,  11406-11409	


         Each ring catenated with 634 others! 	





diamond (dia) symmetry Fd-3m	


two vertices in primitive cell	


	


dia-c symmetry Pn-3m	


two vertices in primitive cell	


two nets related by translation	





dia-c symmetry Pn-3m	


two vertices in primitive cell	


two nets related by translation	



rings are catenated	





Cuprite (Cu2O) - one of 	


the very first crystal	


structures Bragg (1915)	


	


Note the two nets related	


by a unit cell edge 	


(a translation)	


	


Blue spheres are Cu at	


vertices of dia nets	


edges are -O- links (O red)	





Showing one Cu6O6 ring in Cu2O catenated with 6 others	





Multiple dia nets related by translation	


 	



F. Uribe-Romo, M. O'Keeffe, O. M. Yaghi, et al. J. Am. Chem. Soc. 131, 4570 (2009)	



see dia-3*, dia-c4, dia-c6 in RCSR. 	


Primitive cell in each case contains 2 vertices	





Interpenetrating quartz (qtz) nets - non-intersecting edges	


	


"ideal" qtz net P6222 (or P6422) a = aq = √(8/3), c = cq = √3 
 
a. qtz-n, n not a multiple of 3, related by translations along c 
a = aq, c = cq/n  
 
b. qtz-n, n = 3, related by translations along a. 
a = aq/√3, c = cq 
 
c. qtz-n, n = 3 times (not a multiple of 3),  
related by translations along a and c 
a = aq/√3, c = 3cq/n 
 
possibilities for n: 2(a),3(b),4(a),5(a), 6(c),7(a),8(a),9 (not possible) 



qtz P6222	

 qtz-c P6422	



two nets	


related by	


translation	


along c	



note that space group changes "hand", not the net!	



c	



8-rings doubly catenated	





natural tile for qtz              1-skeleton of tile               one 8-ring	



The tile faces are essential rigs. In qtz other 8-rings (c)	


are sums of essential ring (a) and (b)	





The four kinds of 	


catenation in qtz-c	





qtz - view down c	


        P6222	



qtz-c3 - view down c	


   P6222, a' = a/√3	


    nets related by a'	





Co[Au(CN)2]2  S. C. Abrahams et al. J. Chem. Phys. 76, 5458 (1982)	



example of qtz-c6 (both modes	


of interpenetration)	





Another common intergrowth ths	



ths I41/amd 	


4 vertices in primitive cell 	



ths-c P42/nnm, a' = a/√2, c' = c/2	


4 vertices in primitive cell	



dia	



ths	





note that ths has a natural tiling	


[104]. So dual is 4-coordinated	


and is in fact dia. But the dual	


tile must have only 3 faces and	


is the "half-adamantane"tile	


 [62.8]	





tfa-c I41/amd	

tfa I-4m2	



dia	



tfa	





cds is naturally	


self-dual	


	


cds P42/mmc	


	


cds-c P42/mcm.	


a' = a/√2	


nets related by a'	





An oddity: a self-dual tiling	


of fcu symmetry Pa-3	


transitivity 1111	



two interpenetrating fcu	


nets with bent edges,	


symmetry Ia-3	





  red  > green	


green > blue	


   blue > red	



Borromean	





etc-c3 discussed first by S. T. Hyde et al.  	


[Austr. J. Chem. 56, 981, (2003)]	



Nature Chemistry 1, 123 (2009)	





Example of 2D nets -> 3D structure “polycatenation”	





The net jcy formed by linking hcb-c3. Every ring in	


the structure is catenated with others (“self-catenated”).	


occurs in a MOF. M.O’Keeffe, banglin chen et al.	


Angew. Chem. Int. Ed. 2012, 51, 10542.	





The net fnu. has all 6-rings (8 per vertex (dia  has 2 per vertex)	


vertex symbol 63. 63. 63. 63. 63. 65. 65. 65. 67. 7. 67	


Note some are catenated 9e.g. magenta and green	


Bu not all rings independent magenta is sum of three others. So...	





It turns out that fnu has a natural tiling 	


– so the essential rings are not catenated	


- so net is not self-catenated?	



Blatov, V. A.; Delgado-Friedrichs, O., O’Keeffe, M. & Proserpio, D. M.	


 (2007). Acta Cryst. A63, 418-425. 	





nets as surfaces - minimal surfaces	


	


periodic minimal surface (PMS) divides	


space into two parts. The surface has zero	


mean curvature (k1 + k2) = 0), but negative	


Gaussian curvature (k1k2 < 0).	


There are 5 PMS of genus 3. They divide two	


interpenetrating nets of genus 3 	


	



	

net 	

transitivity 	

surface	


	

srs 	

     1111 	

     G	


	

dia 	

     1111                D	


	

pcu 	

     1111 	

     P	


	

cds 	

     1221 	

    CLP	


	

hms 	

     2222 	

      H	





Two interpenetrating pcu nets	



The P minimal surface	


separates the two nets.	


Average curvature zero	


Gaussian curvature neg.	





don't confuse two usages of the term "minimal"	


	


Minimal surface has zero mean curvature (k1 + k2) = 0)	


	


Minimal net has genus = 3.	


	


There are 5 Periodic Minimal Surfaces of genus 3	


but more than five nets of genus 3	





nets as surfaces:	


the chambers of a tile for a net has vertices on the net and	


at the center of the tile. If the chambers are considered a 	


tiling, the dual tiling has vertices in the centers of the 	


chambers. I.e. between the net and its dual. We call such a	


net (derived from xyz) xyz-t.	





Minimal nets (genus 3). There are 15, of which 7 have collisions.	


The collision-free nets are:	



pcu self-dual	


net of P	



dia self-dual	


net of D	



cds self-dual	


net of CLP	



hms self-dual	


net of H	



srs self-dual	


net of G	



ths	


dual is dia	



tfa	


dual is dia	



tfc	


dual is pcu	



BUT only five PMS of genus 3. Why?	





Reminder: periodic minimal surface have positive	


and negative curvature (or flat points) everywhere	


	


The mean (average) curvature is zero	


	


Reference	


	


Delgado et al Acta Cryst. A69, 483 (2013)	





We can construct a tiling that approximates	


a surface associated with a net as follows. 	


For a net say dia find the tiling (see below) and then	


find its chambers (blue and yellow below).	


Now use the chambers as a tiling.	


Now find the dual. The vertices of the dual are in the	


centers of the chambers. I.e. on the surface separating	


the original net from its dual.	



   diamond tile       divided into chambers	





The answer is that more than one net may	


be the labyrinth of a given minimal surface!	


                nets  ↔ surfaces	


               many ↔   one	



clearly surfaces of the same topology	



tfc     →     pcu	





again surfaces of the same topology	



adamantane unit	



dia	

 ths	





Note: that G is the surface of most 3-periodic mesoporous	


materals (a few are D). but….	





bcu-t = nbo-t surface is the IWP minimal  surface of genus 4	





Summary. Most important minimal surfaces	


	


All minimum  surfaces of genus 3	


P 	

net pcu (also tfc)	


D 	

net dia (also tfa, ths)	


G 	

net srs	


H 	

net hms	


CLP 	

net cds	


	


Genus 4	


	


IWP     nets nbo/bcu	







If we take net of all atoms, paddlewheel has collisions	





example of a ladder. Note uninodal 4-c net	





example of an “anti-ladder”	





a minimal net with collisions.	



quotient graph	





two intwrpwnwtrating 	


diamonds linked.	


	


If the blak links go to zero	


length, vertices collide,	


symmetry is higher	


arrangement of points same	


as in CaF2 (flu)	





A (3-4)-c edge-transitive net (Blatov, Sun et al.).	


Embeddin in F432. In P432 a’ – a/2) vertices collide	



net mhq	





Two quotient graphs that are labelled K3,4. 	


Graphs are edge-transitive	





end	




