The Zürich Crystalfography School
University of Zürich, August 30-September 12, 2009

Optimizing the model of a crystal structure

(1) Model of the diffraction experiment
(2) Linear least squares
(3) Non-linear least squares optimization
(4) Restraints and constraints
(5) Quality of the model
(6) Weighting schemes

Suggested Reading:

- 'Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination' L. Krause, R. HerbstIrmer, G.M. Sheldrick, D. Stalke, J. Appl. Cryst. (2015). 48, 3-10 (good info on data processing and data quality)
- 'Optimizing the model of a crystal structure' H.B. Bürgi (Lecture notes from the Zürich school of Crystallography 2013. See http://yaghi.berkeley.edu/links.htm|\#lectures)
- ‘Crystal Structure Refinement - A Crystallographer's Guide to SHELXL'. P. Muller, R. Herbst-Irmer, A. Spek, Th. Schneider, M. Sawaya, OUP 2006
- 'PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors'. A. L. Spek, Acta Cryst. C 71 (2015) 9-18.

Model of the diffraction experiment

$$
\begin{aligned}
F_{\text {model }}(h k l)=\sum_{i=1}^{q} & f_{i}(\mathbf{S}) \\
& \cdot\left[\cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)+i \sin 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)\right] \\
& \cdot \exp \left[\begin{array}{l}
-2 \pi^{2}\left(h^{2} a *^{2} U_{i}^{11}+k^{2} b^{* 2} U_{i}^{22}+l^{2} c^{* 2} U_{i}^{33}\right. \\
\left.+2 h k a * b^{*} U_{i}^{12}+2 h l a * c^{*} U_{i}^{13}+2 k l b * c^{*} U_{i}^{23}\right)
\end{array}\right] \\
& \cdot \operatorname{pop}_{i}
\end{aligned}
$$

$$
I_{\text {model }}=\left|F_{\text {model }}(h k l)\right|^{2} g(\text { scale, Flack, extinction, etc. })
$$

Linear least squares

$$
A_{\text {mode }}(n)=p n+q \quad(n=0, \ldots, \mathrm{~N})
$$

Linear least squares

$$
\begin{gathered}
A_{\text {obs }}(n) \leftrightarrow A_{\text {model }}(n)=p n+q \quad(n=0, \ldots, \mathrm{~N}) \\
S=\sum_{n=0}^{N} w_{n}\left[A_{\mathrm{obs}}(n)-A_{\mathrm{model}}(n)\right]^{2}=\sum_{n=0}^{N} w_{n}\left[A_{\mathrm{obs}}(n)-p n-q\right]^{2}
\end{gathered}
$$

$$
\frac{\partial S}{\partial p}=\frac{\partial S}{\partial q}=0
$$

Linear least-squares equations

$$
\begin{gathered}
p \sum_{n=0}^{N} w_{n} n^{2}+q \sum_{n=0}^{N} w_{n} n=\sum_{n=0}^{N} w_{n} A_{\mathrm{obs}}(n) n \\
p \sum_{n=0}^{N} w_{n} n+q \sum_{n=0}^{N} w_{n}=\sum_{n=0}^{N} w_{n} A_{\mathrm{obs}}(n) \\
{\left[\begin{array}{ll}
\sum_{n=0}^{N} w_{n} n^{2} & \sum_{n=0}^{N} w_{n} n \\
\sum_{n=0}^{N} w_{n} n & \sum_{n=0}^{N} w_{n}
\end{array}\right]\left[\begin{array}{l}
p \\
q
\end{array}\right]=\left[\begin{array}{l}
\sum_{n=0}^{N} w_{n} A_{\mathrm{obs}}^{N}(n) n \\
\sum_{n=0}^{N} w_{n} A_{\mathrm{obs}}(n)
\end{array}\right]}
\end{gathered}
$$

$$
\mathbf{N p}=\Delta
$$

$$
\mathbf{p}_{\mathrm{opt}}=\mathbf{N}^{-1} \boldsymbol{\Delta}
$$

Non-linear least-squares optimization

$I_{\text {obs }} \leftrightarrow I_{\text {model }}=\left|F_{\text {model }}(h k l)\right|^{2} g$ (scale, Flack, extinction, etc.)

$$
\begin{aligned}
F_{\text {model }}(h k l)=\sum_{i=1}^{q} & f_{i}(\mathbf{S}) \\
& \cdot\left[\cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)+i \sin 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)\right] \\
& \cdot \exp \left[\begin{array}{l}
-2 \pi^{2}\left(h^{2} a^{*^{2}} U_{i}^{11}+k^{2} b^{* 2} U_{i}^{22}+l^{2} c^{* 2} U_{i}^{33}\right. \\
\left.+2 h k a^{*} b^{*} U_{i}^{12}+2 h l a * c^{*} U_{i}^{13}+2 k l b^{*} c^{*} U_{i}^{23}\right)
\end{array}\right]
\end{aligned}
$$

$$
S(\mathbf{p})=\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}
$$

Non-linear least-squares optimization

$$
S(\mathbf{p})=\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}
$$

The shape of $S(\mathbf{p})$ is shown with contour lines

Linearization

\mathbf{p}_{0} is a starting model from e.g. direct methods,
approximate $I_{\text {model }}$ and S in the neigborhood of \mathbf{p}_{0}

$$
\begin{aligned}
& \left.I_{\text {model }}\left(h k l ; \mathbf{p}_{0}+\Delta \mathbf{p}\right)=I_{\text {model }}\left(h k l ; \mathbf{p}_{0}\right)+\sum_{i=1}^{P}\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}} \Delta p_{i}\right) \\
& \begin{aligned}
S\left(\mathbf{p}_{0}+\Delta \mathbf{p}\right) & =\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}\left(h k l ; \mathbf{p}_{0}\right)-\sum_{i=1}^{p}\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}} \Delta p_{i}\right]^{2} \\
= & \sum_{h k l} w(h k l)\left[\Delta I\left(h k l ; \mathbf{p}_{0}\right)-\sum_{i=1}^{P}\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}} \Delta p_{i}\right]^{2}
\end{aligned}
\end{aligned}
$$

Linearized least-squares equations

$$
\begin{aligned}
& \frac{\partial S}{\partial \Delta x_{i}}=\frac{\partial S}{\partial \Delta y_{i}}=\frac{\partial S}{\partial \Delta z_{i}}=0 \\
& \frac{\partial S}{\partial \Delta U_{i}^{11}}=\frac{\partial S}{\partial \Delta U_{i}^{22}}=\frac{\partial S}{\partial \Delta U_{i}^{33}}=\frac{\partial S}{\partial \Delta U_{i}^{12}}=\frac{\partial S}{\partial \Delta U_{i}^{13}}=\frac{\partial S}{\partial \Delta U_{i}^{23}}=0 \\
& \ldots=\frac{\partial S}{\partial g}=0, \quad(i=1, \ldots, q) . \\
& \begin{array}{l}
\left.\sum_{j=1}^{p} \sum_{h k l} w(h k l)\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}}\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{j}}\right)_{\mathbf{p}_{0}} \Delta p_{i}\right) \\
=\sum_{h k l} w(h k l) \Delta I\left(h k l ; \mathbf{p}_{0}\right)\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}} \quad(i=1, \ldots, P) \\
\mathbf{N} \Delta \mathbf{p})=\Delta
\end{array}
\end{aligned}
$$

Linearized least-squares equations

$$
\begin{gathered}
\mathbf{N} \boldsymbol{\Delta} \mathbf{p}=\boldsymbol{\Delta} \\
N_{i j}=\sum_{h k l} w(h k l)\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}}\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{j}}\right)_{\mathbf{p}_{0}} \\
\Delta_{i}=\sum_{h k l} w(h k l) \Delta I\left(h k l ; \mathbf{p}_{0}\right)\left(\frac{\partial I_{\text {model }}(h k l ; \mathbf{p})}{\partial p_{i}}\right)_{\mathbf{p}_{0}} \\
\Delta \mathbf{p}=\mathbf{N}^{-1} \boldsymbol{\Delta} \\
\mathbf{p}_{1}=\mathbf{p}_{0}+\Delta \mathbf{p} \\
\cdots
\end{gathered}
$$

Non-linear least-squares optimization

$$
S(\mathbf{p})=\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}
$$

The shape of $S(\mathbf{p})$ is shown with contour lines

Check convergence

(from SHELXL.lst)

N value esd shift/esd parameter
$1 \quad 0.11374 \quad 0.00031 \quad-0.026 \quad$ OSF
$20.50684 \quad 0.02871 \quad 0.027$ FVAR 2
$3 \quad 0.42375 \quad 9.99999 \quad 0.000$ FVAR 3
$4 \quad 0.12506 \quad 0.00529 \quad 0.089$ FVAR 4
$5 \quad 0.00023 \quad 0.00005$-0.025 EXTI

Mean shift/esd $=0.032$ Maximum $=0.209$ for U11 O1B_b

Max. shift $=0.003$ A for O1B_b Max. dU $=0.001$ for O1B_b

Convergence for final model

(Acta Cryst standard)

| N | value | esd | shift/esd parameter | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| 1 | 0.11374 | 0.00031 | 0.000 | OSF |
| 2 | 0.50729 | 0.02870 | 0.001 | FVAR 2 |
| 3 | 0.42375 | 9.99999 | 0.000 | FVAR 3 |
| 4 | 0.12520 | 0.00528 | 0.001 | FVAR 4 |
| 5 | 0.00023 | 0.00005 | 0.000 | EXTI |

Mean shift/esd $=0.001$ Maximum $=0.006$ for U12 O1B_b

Max. shift $=0.000$ A for O1B_b Max. dU $=0.000$ for O1B_b

Constraints

x, y, z on general position
$x, y, 0$ in mirror plane
x, x, z in mirror plane
$U^{11}, U^{22}, U^{33}, U^{12}, U^{23}, U^{13}$
$U^{11}, U^{22}, U^{33}, 0, \quad 0, \quad U^{13}$
$U^{11}, U^{11}, U^{33}, 0, \quad 0, \quad 0$

Special position

constraints
(due to symmetry,
set automatically)

Optional constraints
$10+\mathrm{q}$.rst add 10 to an $\mathrm{x} \mathrm{y} \mathrm{z} \mathrm{U} \mathrm{U}^{\mathrm{ij}}$ or pop will fix its value to q.rst
FVAR osf p .. for making any $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{U}^{\mathrm{ij}}$ or pop parameter the same for different atoms (10k+q.rst)
EXYZ, EADP constraining atoms to the same $\mathrm{x} y \mathrm{z}$ and U^{ij}
AFIX mn for fixing geometries of $\mathrm{H}-\mathrm{X}$ bonds and rings

Complementary disordered atoms

at a distance close to or below the resolution limit

EADP O2A O2B
FVAR 0.113620 .89498

| x | y | z |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllll}\text { O1A } & 3 & 0.170717 & 0.093893 & 0.000000 & 20.50000 & 0.00671\end{array}$
$\begin{array}{llllllll}\text { O1B } & 3 & 0.194774 & 0.076868 & 0.000000 & -20.50000 & 0.00671\end{array}$

Note:
$\mathrm{D}(\mathrm{O} 1 \mathrm{~A} . . \mathrm{O} 1 \mathrm{~B})=0.61 \AA$, Data Resolution $\sim 0.7 \AA$
Population for SHELX of O1A: 0.5 * FVAR(2)
Population for SHELX of O1B: 0.5 * [1-FVAR(2)]
Both atoms on mirror plane, i.e. $\mathrm{z}=0$ and multiplicity mult $=2$
Population at site of O1A: 0.5 * FVAR(2) * mult $=0.89498$
Population at site of O1B: 0.5 * [1-FVAR(2)] * mult $=0.10502$

Geometric Restraints

$$
\begin{gathered}
S^{\prime}=S(\mathbf{p})+\sum_{j} w_{i}\left[d_{j, 1}^{\text {model }}(\mathbf{p})-d_{j, 2}^{\text {model }}(\mathbf{p})\right]^{2} \\
\text { SAME, SADI } \\
\text { SADI 0.03 C20 C16 C16 C18 C18 C20 } \\
\text { w }=1 /\left(0.03^{*} 0.03\right)
\end{gathered}
$$

$$
S^{\prime}=S(\mathbf{p})+\sum_{j} w_{j}\left[d_{j}^{\text {model }}(\mathbf{p})-d_{j}^{\mathrm{restraint}}\right]^{2}
$$

DFIX, DANG, CHIV, FLAT
DFIX 1.25 0.02 O8 N10 O7 N10 O6 N9 O5 N9

$$
\mathrm{d}^{\text {restraint }}=1.25, \mathrm{w}=1 /(0.02 * 0.02)
$$

Other Restraints

$$
S^{\prime}=S(\mathbf{p})+\sum_{j} w_{j}\left[q_{j}^{\text {model }}(\mathbf{p})-q_{j}^{\text {restraint }}\right]^{2}
$$

For ADPs: ISOR, SIMU, DELU
For occupations: SUMP (to include analytical data)

$$
S^{\prime}=S(\mathbf{p})+\sum_{j} w_{j}\left[p_{j, k+1}-p_{j, k}\right]^{2}=S+\sum_{j} w_{j} \Delta p_{j, k}^{2}
$$

Shift limiting restraints: DAMP

DAMP restraints

$$
S(\mathbf{p})=\sum_{h k} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}
$$

The shape of $S(\mathbf{p})$ is shown with contour lines

Model of the diffraction experiment

(hopefully complete and correct)

$$
\begin{aligned}
& F_{\text {model }}(h k l)=\sum_{i=1}^{q} f_{i}(\mathrm{~S}) \\
& \cdot\left[\cos 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)+i \sin 2 \pi\left(h x_{i}+k y_{i}+l z_{i}\right)\right] \\
& \cdot \exp \left[\begin{array}{l}
-2 \pi^{2}\left(h^{2} a^{*^{2}} U_{i}^{11}+k^{2} b^{* 2} U_{i}^{22}+l^{2} c^{* 2} U_{i}^{33}\right. \\
\left.+2 h k a * b^{*} U_{i}^{12}+2 h l a * c^{*} U_{i}^{13}+2 k l b^{*} c^{*} U_{i}^{23}\right)
\end{array}\right] \\
& \cdot p o p_{i} \\
& I_{\text {model }}=\left|F_{\text {model }}(h k l)\right|^{2} g \text { (scale, Flack, extinction, etc.) }
\end{aligned}
$$

including all constraints and restraints

Global quality indicators

$$
\begin{aligned}
& R 1=\frac{\sum_{h k l}| | F_{\text {obs }}(h k l)\left|-\left|F_{\text {model }}(h k l ; \mathbf{p})\right|\right|}{\sum_{h k l}\left|F_{\text {obs }}(h k l)\right|} \\
& w R 2=\left\{\frac{\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}}{\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)\right]^{2}}\right\}^{1 / 2}=\left\{\frac{S(\mathbf{p})}{\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)\right]^{2}}\right\}^{1 / 2} \\
& G O F=\left\{\frac{\sum_{h k l} w(h k l)\left[I_{\text {obs }}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}}{n_{\text {obs }}-n_{\text {par }}}\right\}^{1 / 2}=\left(\frac{S(\mathbf{p})}{n_{\text {obs }}-n_{\text {par }}}\right)^{1 / 2}
\end{aligned}
$$

$\sigma\left(\mathrm{F}_{0}{ }^{2}\right)$ and weighting schemes

- The reliability of an $\mathrm{F}_{0}{ }^{2}(\mathrm{hkl})$ is indicated by ist weight $\mathrm{w}(\mathrm{hkl})$. Ideally $\mathrm{w}(\mathrm{hkl})=1 / \sigma^{2}\left[\mathrm{~F}_{0}{ }^{2}(\mathrm{hkl})\right]$ in practice $\sigma^{2}\left[\mathrm{~F}_{\mathrm{o}}{ }^{2}(\mathrm{hkl})\right]$ are fudged at least twice.
$-\sigma_{\text {raw }}^{2}\left[\mathrm{~F}_{\mathrm{o}}^{2}(\mathrm{hkl})\right]=[\mathrm{I}(\mathrm{hkl})+\mathrm{n} * \mathrm{~B}(\mathrm{hkl})] \quad$ Poisson statistics
- Sheldrick's error model
(SADABS):

$$
\sigma^{2}\left[\mathrm{~F}_{\mathrm{o}}^{2}(\mathrm{hkl})\right]=\left(\mathrm{K} * \sigma_{\mathrm{raw}}\left[\mathrm{~F}_{\mathrm{o}}^{2}(\mathrm{hkl})\right]\right)^{2}+\left(\mathrm{g} *\left[\mathrm{~F}_{\mathrm{o}}^{2}(\mathrm{hkl})\right]\right)^{2}
$$

Ideal values: $\quad \mathrm{K}=1, \quad \mathrm{~g}=0$
Acceptable values

$$
\begin{aligned}
0.7 & <\mathrm{K}<1.3 \\
0 & <\mathrm{g}<0.05
\end{aligned}
$$

For K and g outside acceptable ranges check your sample quality and data integration

$\sigma\left(\mathrm{F}_{0}{ }^{2}\right)$ and weighting schemes

(from SHELXL.lst)

- How does SHELXL modify $\sigma\left(\mathrm{F}_{\mathrm{o}}^{2}\right)$'s for least-squares refinement?
- Inconsistent equivalents etc. h k l Fo^2 Sigma(Fo^2) N Esd of mean(Fo^2)
$\begin{array}{lllllll}-9 & 18 & 2 & 2.02 & 0.59 & 9 & 3.07\end{array}$
1 Inconsistent equivalents
$\operatorname{Sigma}(\mathrm{Fo} \wedge 2)=\left(\Sigma \sigma^{2}\left[\mathrm{~F}_{\mathrm{o}}{ }^{2}(\mathrm{hkl})\right] / \mathrm{N}\right)^{1 / 2}$
Σ : sum over equivalents

Esd of mean $\left(\mathrm{Fo}^{\wedge}{ }^{2}\right)=\left\{\Sigma\left[\mathrm{F}_{\mathrm{o}}{ }^{2}(\mathrm{hkl})-<\mathrm{F}_{\mathrm{o}}{ }^{2}(\mathrm{hkl})>\right] / \mathrm{N}(\mathrm{N}-1)\right\}^{1 / 2}$

$\sigma\left(F_{0}{ }^{2}\right)$ and weighting schemes

How does SHELXL MODIFY sigma^2(Fo^2) to obtain weights?

Weight $=1 /\left[\operatorname{sigma}{ }^{\wedge} 2\left(\mathrm{Fo}^{\wedge} 2\right)+(\mathrm{a} * \mathrm{P})^{\wedge} 2+\mathrm{b} * \mathrm{P}\right]$
where $\mathrm{P}=\left(\operatorname{Max}\left(\mathrm{Fo}^{\wedge} 2,0\right)+2 * \mathrm{Fc}^{\wedge} 2\right) / 3$
a and b are chosen such that GOF ($\sim S^{1 / 2}$) is as close to 1 as possible for each of 10 groups in Fc/Fcmax

```
NOTE: FOR GOOD DATA AND A GOOD MODEL \(a \sim 0.00-0.05, \quad b \sim 0-5\), THE SMALLER, THE BETTER!
```

NOTE: IF a > 0.05, B > 5,
QUESTION THE SAMPLE, DATA, INTEGRATION AND/OR MODEL

Semi-global quality indicators

(in reciprocal space, from SHELXL.lst)

$$
\mathrm{R} 1=0.0529, \mathrm{wR} 2=0.1151
$$

Analysis of variance for reflections employed in refinement

$$
K=\operatorname{Mean}\left[F \mathcal{F o}^{\wedge} 2\right] / \operatorname{Mean}\left[F \mathrm{Fc}^{\wedge} 2\right] \text { for group }
$$

$\begin{array}{lllllllllll}\mathrm{Fc} / \mathrm{Fc}(\max) & 0.000 & 0.014 & 0.028 & 0.048 & 0.063 & 0.083 & 0.109 & 0.134 & 0.172 & 0.231\end{array}$
Number in group 58. $52 . \quad 56 . \quad 56 . \quad 51 . \quad 55 . \quad 55 . \quad 55.53$.

GooF	1.149	1.438	1.576	1.719	1.654	0.867	0.849	0.773	1.139
K	-1.165	0.034	0.577	0.626	0.750	0.989	1.037	1.029	1.037

$\begin{array}{llllllllll}\text { Resolution(A) } & 0.78 & 0.81 & 0.85 & 0.90 & 0.94 & 1.01 & 1.10 & 1.23 & 1.43 \\ 1.88\end{array}$
$\begin{array}{llllllllll}\text { Number in group } & 56 . & 56 . & 55 . & 52 . & 56 . & 53 . & 55 . & 54 . & 55 .\end{array}$

GooF	1.451	1.396	1.438	1.388	1.490	1.371	1.150	0.896	0.862
K	0.797	1.002	0.995	1.009	1.011	1.031	1.022	1.020	1.016
R1	0.296	0.182	0.149	0.101	0.116	0.069	0.060	0.037	0.021

Recommended weighting scheme: WGHT 0.0110162 .5899

Local quality indicators

(in reciprocal space, from SHELXL.lst)

Most Disagreeable Reflections

Error/esd is sqrt(wD^2/<wD^2>), w is given by the weight formula, $\mathrm{D}=\mathrm{Fo} \wedge 2-\mathrm{Fc} \wedge 2$ and $<>$ refers to the average over all reflections.

h	k	l	$\mathrm{Fo} \wedge 2$	$\mathrm{Fc} \wedge 2$	Error/esd	$\mathrm{Fc} / \mathrm{Fc}(\mathrm{max})$	Resolution (A)
0	2	2	63080.22	3488.57	16.96	0.064	7.33
2	2	2	124011.70	241363.84	8.07	0.530	5.99
0	6	6	33451.04	19797.35	4.64	0.152	2.44
0	2	8	23532.70	13514.00	4.35	0.125	2.51
2	2	6	15895.94	9150.49	3.68	0.103	3.13
0	4	8	1529.09	60.39	3.66	0.008	2.32
2	2	8	54521.12	74668.03	3.48	0.295	2.44
2	4	4	200053.92	158813.53	3.34	0.430	3.46
0	2	6	32.98	1893.38	3.28	0.047	3.28
1	5	5	97056.38	75962.81	3.12	0.297	2.90
1	3	3	49886.82	63090.50	2.55	0.271	4.76

Local quality indicators

(reciprocal space)

Deviations from expectation values for Gaussian distribution of errors (example with 745 observations)
present example

>3 sigma	0.3%	$10 / 745$
>4 sigma	0.01%	$4 / 745=>0.5 \%$
>5 sigma	0.0001%	$2 / 745$

The present example shows two outliers (0 22) and (2 22 2) which have to be accounted for somehow, e.g. experimental error or incomplete model

Local quality indicators

(direct space, from SHELXL.lst)

Standard uncertainties (s.u.)

ATOM	x	y	z	sof	U 11	U 22	$\ldots .$.
Zr1	0.11941	0.00000	0.00000	0.12500	0.00141	0.00286	
0.0007	0.00003	0.00000	0.00000	0.00000	0.00036	0.00027	
O1A_a	0.17088	0.09373	0.00000	0.45000	0.00671	0.00601	
0.0045	0.00017	0.00016	0.00000	0.00000	0.00163	0.00156	
C1_a	0.15149	0.15149	0.00000	0.22500	0.00896	0.00896	
0.0090	0.00022	0.00022	0.00000	0.00000	0.00180	0.00180	
\longrightarrow	Red numbers: isotropic positional uncertainties $\sigma_{\mathrm{i}}($ in $\AA)!$						
Approximate uncertainty in distance d between atoms i and j							
$\sigma(\mathrm{d}) \sim\left(\sigma_{\mathrm{i}}^{2}+\sigma_{\mathrm{j}}^{2}\right)^{1 / 2}$							

Parameter correlation

$$
S(\mathbf{p})=\sum_{h k l} w(h k l)\left[I_{\mathrm{obs}}(h k l)-I_{\text {model }}(h k l ; \mathbf{p})\right]^{2}
$$

$\mathrm{c}_{\mathrm{ij}}>0.98$: increasing both p_{i} and p_{j} has little effect on R $p_{i}+p_{j}$ is poorly determined, $p_{i}-p_{j}$ is well determined
$\mathrm{c}_{\mathrm{ij}}<-0.98$: increasing pi and decreasing pj has little effect on R
$p_{i}-p_{j}$ is poorly determined, $p_{i}+p_{j}$ is well determined

Local quality indicators

(direct space, from SHELXL.lst)

Does the model obey the restraints?

DFIX 1.25 O8 N10 O7 N10 O6 N9 O5 N9
... 26 more DFIX restraints
SADI C20 C16 C16 C18 C18 C20 C15 C17 C17 C19 C19 C15
... 7 more SADI restraints, 4 FLAT restraints
... 8 DELU restraints, 8 SIMU restraints, 7 EADP constraints
R1 $=0.2100$ for 4848 data, 640 parameters and 977 restraints

Summary of restraints applied in FINAL cycle DFIX SAME/SADI FLAT DELU SIMU

Number	42	120	45	212	558
rms sigma	0.0200	0.0200	0.1000	0.0100	0.0528
rms deviation	0.0711	0.0219	0.0637	0.0053	0.0300

Local quality indicators

(direct space, from SHELXL.lst)

Does the model obey the restraints?

DFIX 1.25 O8 N10 O7 N10 O6 N9 O5 N9
really means
DFIX 1.25 0.02 O8 N10 O7 N10 O6 N9 O5 N9
Disagreeable restraints before cycle xy

Observed	Target	Error	Sigma	Restraint
1.3390	1.2500	0.0890	0.0200	DFIX O8 N10

Bond lengths and angles
O8 - N10 1.3390 (0.0172)
NOTE: This standard uncertainty is meaningless as it is determined by the DFIX instruction!

Local quality indicators

(direct space, from PLATON)

Difference Fourier synthesis showing residual electron density Q-peaks or Contour map

Q-peaks are generally informative as long as significantly occupied sites have not been included in the structural model

Contour maps are advised when disordered solvents need to be modeled (most easily produced with PLATON)

The Disordered Solvent Problem

- Molecules of interest often co-crystallize (only) with the inclusion of a suitable solvent molecule.
- Solvent molecules often fill voids in a structure with little interaction and are often located on symmetry sites and with population less than 1.0
- Sometimes even the nature of the (mixture) of included solvent(s) is unclear.
- Inclusion of the scattering contribution of the solvent to the structure factors can be done either with an (elaborate) disorder model or with the SQUEEZE approach.

From: Ton Spek, PLATON Workshop, Chicago, 24-July-2010 and
A. L. Spek, Acta Cryst. C 71 (2015) 9-18

How does SQUEEZE work?

- Determine VOID region
- Calculate residual density (difference Fourier)
- Count e- in VOID region
- Calculate their contribution to the model structure factors and model phases
- Calculate residual density with improved model phases
- Iterate to convergence

Space available for probe atom ($\mathrm{r}=1.2 \AA$)

VOID available for solvent

How does SQUEEZE work?

$$
\begin{gathered}
\Delta \rho=V^{-1} \sum_{h}\left[k\left|F_{h}^{o}\right| \exp \left(i \varphi_{h}^{m}\right)-\left|F_{h}^{m}\right| \exp \left(i \varphi_{h}^{m}\right)\right] \exp [-2 \pi i(\mathbf{h} \cdot \mathbf{r})] \\
F_{000}^{s}=\Delta V_{g} \sum_{k}^{\text {VOID }} \Delta \rho\left(\mathbf{r}_{k}\right) \\
F_{h}^{s}=\Delta V_{g} \sum_{k}^{\text {VOID }} \Delta \rho\left(\mathbf{r}_{k}\right) \exp [2 \pi i(\mathbf{h} \cdot \mathbf{r})] \\
\begin{array}{ll}
\text { - Count e- in VOID } \\
F_{h}^{M} & \begin{array}{l}
\text { - Calculate contribution } \\
\text { of in VOID to } \\
\text { structure factor }
\end{array} \\
\Delta \rho=F_{h}^{m}+F_{h}^{s}=\left|F_{h}^{M}\right| \exp \left(i \varphi_{h}^{M}\right) & \begin{array}{l}
\text { - Calculate } \\
\text { improved phases }
\end{array}
\end{array} \\
\end{gathered}
$$

Results from SQUEEZE

- Number of Missing

Reflections $=12$

- Number of Missing Low Order Reflections = 2 $\left(\begin{array}{lll}0 & 0 & 2\end{array}\right) \mathrm{Fc}($ solv $)=-112.4, \quad\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \mathrm{Fc}($ solv $)=-156.7$
- Volume of VOID $4554 \AA^{3} \quad$ containing 603 electrons (corresponds to ~ 35 water molecules whose volume would be approximately $35 \cdot 15 \AA^{3} \sim 500 \AA^{3}$)

SinT/L	$<$ FcMod $>$	$<$ FcSolv $>$	$<$ FcTot $>$	$<$ Fo $>$	N	R(Mod)	R(Tot)
0.05	63.65	180.47	243.97	244.96	1.	0.740	0.004
0.10	324.94	39.76	286.62	287.24	6.	0.137	0.025
0.15	307.25	24.84	314.25	317.72	13.	0.096	0.027

Results from SQUEEZE,

EXAMPLE FROM A MOF-STRUCTURE:

- Without modeling pore content:
$\mathrm{R} 1=0.0436 \quad$ WGHT $0.0551 \quad 191.2836$
- SQUEEZE only (~600 e-)

R1 = 0.0251 WGHT $0.0132 \quad 36.5623$
NOTE: the phase improved difference Fourier after SQUEEZE is often clearer and a starting point for atomic modeling of solvent density

- Modeling most density in pores, no SQUEEZE:

R1 $=0.0271 \quad$ WGHT $0.0301 \quad 27.8971$

Disordered solvent: discrete modeling or SQUEEZE?

- SEE: 'PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors'. A. L. Spek, Acta Cryst. C 71 (2015) 9-18.
- QUOTE: ‘The development of an atomistic model of the disordered solvent is generally to be preferred wherever possible, in particular when the disorder can be described easily with constraint and restraint tools, such as those available in SHELXL.'
- QUOTE: ‘The time invested in devising an unsatisfactorily parametrized disordered solvent model is not always considered to be worth the effort. This applies in particular in the context of a routine (service) structure determination intended to characterize the chemistry of the main component in the crystal.'

