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8 Optimizing the model of a crystal structure 
 
 
1 Model of the diffraction experiment 
 
 Structure solution by direct methods, interpretation of the Patterson function or other 
procedures provides assignments of atom types and estimates of coordinates for some or all 
atoms in the unit cell. The reliability of these results is limited and depends on the quality of 
the initial estimates of the phases of the structure factors. In order to improve the reliability of 
the structure determination, a mathematical model of the electron density and – more 
generally – of the entire diffraction experiment is required. Its parameters must be adjusted to 
reproduce optimally the experimental observations. 
 The electron density in a unit cell is approximated as a sum of atomic densities, as 
described earlier, but – to be physically realistic – it has to also take into account atomic 
motion. The motionless atomic densities are usually assumed to be spherically symmetric, but 
may also be chosen to account for deviation from spherical symmetry due to chemical 
bonding. In standard structure analysis spherically symmetric density functions calculated by 
Hartree-Fock methods for isolated atoms are used. The details of atomic and molecular 
vibrations are usually very complex. It is therefore assumed that each atom moves 
independently of all others in a quadratic potential which may be isotropic or anisotropic. The 
corresponding probability density function takes the form of a 3D Gaussian distribution. 
Mathematically the smearing of the static atomic density ρ0,i(r – ri) by thermal motion is 
expressed in terms of a convolution with the Gaussian probability density: 
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(see footnote 3 in ‘Introduction to crystals, electromagnetic radiation and interference’ by 
Hans-Beat Bürgi and ‘Math refresher’ by Gervais Chapuis). The elements of the symmetric 
matrix U are the mean-square expectation values of the atomic displacements Δx, Δy, Δz from 
the mean atomic position: U11 = <Δx2>a2, U22 = <Δy2>b2, U33 = <Δz2>c2, U12 = <ΔxΔy>ab, 
U13 = <ΔxΔz>ac, U23 = <ΔyΔz>bc; ||U|| is the determinant of U. Fourier transformation leads 
to a structure-factor expression, which is now somewhat more complicated 
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The atomic scattering factor fi of my previous lectures (see ‘Scattering from crystals: 
diffraction’ by Hans-Beat Bürgi) has been divided into three parts, f0,i being the Fourier 
transform of the static density ρ0,i(r – ri), popi being an occupation factor and exp-2πi(r*T Ui 
r*) being the Fourier transform of the 3D Gaussian distribution function describing atomic 
motion. In the early stages of model optimization an isotropic approximation to atomic 
displacement parameters is usually sufficient 
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For every atom there are thus three positional coordinates, xi, yi, zi, to be optimized, at least 
one, but usually six displacement parameters Ui

kl and a population parameter popi to be 
determined, up to ten parameters in total.  
 An appropriate model for a diffraction experiment has to take into account factors 
other than diffraction by spherically symmetric electron density distributions. These include a 
factor k scaling the structure factors calculated for one unit cell to the volume of the crystal 
specimen, twin parameters (BASF), a Flack parameter (if the absolute structure of the crystal 
specimen needs to be specified), extinction parameter(s) (EXTI, accounting approximately for 
the failure of the kinematic scattering theory used throughout) and several others. The 
resulting model for the scattered intensity may be quite complex: 
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2 Optimization conditions 
 
 The condition used in crystal structure least-squares optimization is to minimize the 
sum S of the squares of the differences between observed and suitable model intensities. The 
uncertainty of the measurements is accounted for by a weight factors w(hkl)  
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The minimization conditions are 
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These calculations imply some straightforward, but complicated algebra. The optimization 
process is therefore illustrated first with a much simpler example, linear regression. 
 
 
3 Linear regression 
 

Suppose that consecutive measurements of a 
quantity A may be expected to increase an initial value q 
by a constant amount p 

 
Amodel(n) = pn + q           (n = 0, …, N) . 
 

 3   ted to increase linearly with n. 



Given a series of measurements Aobs(n) with reliability w(n), what are the best estimates of p 
and q? The quantity to be minimized and the optimization conditions are 
Given a series of measurements Aobs(n) with reliability w(n), what are the best estimates of p 
and q? The quantity to be minimized and the optimization conditions are 
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in the unknowns p, q. The equations are called 
linear because p and q occur to the first power 
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These equations are more conveniently expressed in matrix notation: 
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The optimized parameters are 

.1ΔNp −=  (xi, yi, zi)
 A graphical representation of this 
procedure is given in Fig. 2. The function S 
being quadratic in p and q, is represented by 
a 3D parabolic basin. The coordinates of its 
minimum represent the optimal values of 
the parameters. Note that the calculation of 
popt and qopt require the known quantities 
Aobs(n), n and w(n) only. 

(Uikl) 

Fig. 3. Schematic contour-line 
representation of S as a function of the 
parameters xi, yi, zi, Ukl

i for a non-linear 
least-squares problem. The absolute 
minimum is indicated by a cross. The circle 
indicates a set of approximate structural 
parameters likely to refine to the absolute 
minimum of S; the square indicates a set 
of approximate structural parameters likely 
to refine to the nearby subsidiary minimum 
of S. 

 
 
4 Non-linear least-squares 
          optimization 
 
The structure factor F(hkl) and thus 
Imodel(hkl) is clearly a non-linear function in 
the parameters xi, yi, zi, Ui

kl. The quantity S 
is therefore no longer parabolic and – most 
importantly – may show several minima 
implying that the minimization conditions 
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may lead to more than one solution. This is shown schematically in Fig. 3, where S is 
represented by contour lines. The problem is to find the absolute minimum of S (cross in Fig. 
3). From the initial solution of the phase problem approximate values of the parameters xi, yi, 
zi, Ui

kl are available. If these parameters are close to the absolute minimum (circle in Fig. 3) a 
modified form of linear regression is highly likely to find this minimum. If the initial 
parameters are close to one of the subsidiary minima (e.g. the square in Fig. 3), the 
optimization process may well end up in the subsidiary minimum and produce a deficient or 
even erroneous description of the crystal structure. From the point of view of actual 
calculations, the non-linearity of the structure-factor equation implies that the simple matrix 
approach given for linear regression cannot be used as it stands. 

The solution to the problem is to linearize it. The model intensities Imodel(hkl) are 
expanded into a Taylor series up to first order terms in the changes of the structural 
parameters Δpi relative to the point characterized by the set of P approximate parameter 
values xi,0, yi,0, zi,0, Ui,0

kl, k, etc. abbreviated below as the vector  (circle in Fig. 3) 0p
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Instead of determining the parameters, only the shifts of the parameters Δpi need to be found. 
From the shifts, improved parameters p1 = p0 + Δp are obtained. The shape of S around p0, p1 
and its absolute minimum is usually not parabolic, not even approximately. Linearization and 
determination of the parameter shifts must therefore be repeated until convergence is reached, 
i.e. until the parameter shifts are smaller than a specified limit.  The function to be minimized 
is  
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and the minimization conditions are 
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In matrix notation, these equations are,  
 

N  Δp = Δ 
 
as previously. The element of  in row i and column j is N
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The element of Δ in row i is  
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The parameter shifts and the new parameters become  
 

Δp = -1 Δ N
p1 = p0 + Δp . 

 
 The simplicity of the final result is deceiving as may be seen from the following 
consideration. For a relatively small structure with 11 atoms a model with anisotropic 
displacement parameters contains at least 11·9 + 1 = 100 parameters. The number of elements 
of N and Δ to be calculated is 100·101/2 + 100 = 5150. Assuming a typical ratio of parameters 
to observation of 1:10 there will be 1000 observations implying that 1000 values of  I model  
(hkl; p) and 1000·100 = 100’000 values of ∂Imodel(hkl; p)/∂pi need to be computed and 
properly summed up 5150 times. Keep these numbers in mind when you do your own least-
squares refinement, probably with many more parameters and observations and in as little 
time as a few seconds to a few minutes. Experience this blessing of modern-day computing 
power knowingly! 
 
 
5 Restraints and constraints 
 
 It sometimes happens that the structural model chosen is physically unreasonable or 
that the information contained in the diffraction intensities is insufficient to determine all 
parameters of a structural model. In such cases the matrix N of normal equations may become 
singular or near-singular, i.e. the determinant ||N|| is zero or very small (on the order of the 
numerical accuracy of the processor in your computer). As a consequence the inverse matrix 
N-1 is undetermined and the parameter shifts Δp cannot be obtained. Oscillating values of one 
or more elements Δpi and unreasonably large standard uncertainties of the parameters (see 
below) are signs of such problems. The problem must be remedied either by choosing a more 
reasonable structural model or by coding independent external information on the crystal 
structure into restraints or constraints.  

Restraints are conditions qj
res imposed on features qj

model(p) of the structural model that 
must be fulfilled within a certain tolerance. Such conditions are called pseudo-observational 
equations and are added to the minimization function S  
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They affect N and - if properly chosen - may remove the singularity. 
 
5.1 Restraints 
 

In asymmetric units containing several chemically identical units (sometimes related 
by pseudo-translation or other pseudo-symmetry operations), one may wish to restrain the 
geometry of these units to be closely similar. For distances di in units 1 and 2 the restraints 
take the form  
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If an interatomic distance or other geometrical parameter dj is poorly determined by 
the diffraction data, but known from other experimental or theoretical sources, its value dj

res 

may also be introduced into the model of refinement in terms of a restraint. Examples include 
C-H, Cl-O or B-F distances, the latter in disordered ClO4

¯ or BF4
¯ ions, deviations from 

planarity in fragments with more than three atoms, etc: 
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 For a nearly singular matrix of normal equations N the parameter shifts between 
cycles k and k+1 from pk to pk+1 may become unreasonably large, thus catapulting the model 
from an area near the absolute minimum to one near a subsidiary minimum (Fig. 3). This 
effect can sometimes be avoided by shift-limiting restraints  

  .][' 2
,1,∑ −+= +

m
kmkmm ppwSS

This restraint translates into adding wm to the diagonal element of N corresponding to pm. 
 In some space groups the origin in one or more directions can not be fixed on 
symmetry elements. Examples include P1, P2, P21, P3, Pna21, etc. Most software in common 
use fix the origin with a restraint described by H.D. Flack & D. Schwarzenbach (1988) (Acta 
Cryst. A44, 499-506). 
 
5.2  Constraints 
 
 A constraint is an exact relationship between features of a structural model, qj

res = 
qj

model(p). A constraint may be simulated in terms of a restraint by increasing its weight wj to a 
very large value, i.e. decreasing the tolerance for deviations of qj

model(p) from qj
res. Charge 

neutrality in ionic compounds is an example that is conveniently treated in this way.  
Exact constraints may be expressed in two ways. On one hand a constraint parameter 

may be assigned a fixed value which is not refined, i.e. it is not considered in the derivative 
calculations of the minimization conditions. Examples include special values of atomic 
coordinates and atomic displacement parameters required for certain special positions in some 
space groups. Alternatively and more generally constraints are expressed with the help of 
LaGrange multipliers (see any advanced text book of mathematics). 
 
 
6 Quality of the model 
 

There are several ways to gauge the quality of a structural model. Some quality 
indicators, such as R-factors and Goodness-of-fit (GOF) are global quantities. They give only 
limited information on the quality of a structure determination. Others, such as the standard 
uncertainties of the refined parameters, which will be introduced below, refer to specific 
details of the structural model. 
 
6.1       Global quality indicators: R-factors and Goodness-of-fit 
 

Many different R-factors have been invented. Here we mention only those in general 
use: R1, wR2 and GOF  

 7



( ) ( )
,

)(

;
1

∑
∑ −

=

hkl
obs

hkl
modelobs

hklF

hklFhklF
R

p
 

[ ]

[ ] [ ]
,

)()(
)(

)()(

);()()(
2

2/1

2

2/1

2

2

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ −
=

∑∑

∑

hkl
obs

hkl
obs

hkl
modelobs

hklIhklw
S

hklIhklw

hklIhklIhklw
wR p

p
 

[ ]
.)(

);()()( 2/1
2/12

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−
=
∑

parobsparobs

hkl
modelobs

nn
S

nn

hklIhklIhklw
GOF p

p
 

The simplest of them, R1, measures the fraction of the sum of the structure-factor amplitudes 
that is not explained by the model with parameters p. It is often multiplied by 100 and given 
as a percentage value. The quantity wR2 is based on a similar idea; it compares the sum of the 
squared differences between observed and model intensities with the sum of squared 
intensities, both weighted with the reliability factors w(hkl). The two quantities wR2 and GOF 
are closely related to the function S minimized during refinement and represent reliable 
measures of model quality. 
 The values of R1, wR2 and GOF to be expected in a structure analysis depend on 
several factors: the quality of the crystal and thus of the diffraction data, on one hand, and the 
adequateness of the model, on the other hand. For molecular crystals (excluding proteins) R1 
~ 0.05 is not unreasonable; as a rule of thumb wR2 ~ 2-3 R1. The expectation value of GOF is 
1, but depends strongly on the reliability factors w(hkl) as discussed in chapter 7 on weighting 
schemes.  
 
6.2 Reliability of structural model, standard uncertainties and correlation 
 
 The results of a least-squares refinement are incomplete without a quantitative 
statement of its uncertainty. Such a statement reflects a lack of knowledge due to random and 
systematic defects in the observed data and to deficiencies in the model. Least-squares 
refinement provides not only optimized atomic coordinates and displacement parameters but 
also their standard uncertainties (s.u.) and correlations between s.u.’s in terms of an 
uncertainty matrix U 

U = GOF N-1 . 

The diagonal elements of U are ui
2, the off-diagonal elements are uiujcorij. The ui‘s are the 

s.u.’s of the parameters pi (previously called estimated standard deviations). The convergence 
of the least-squares optimization may be expressed in terms of the ratios between parameter 
changes and their s.u.s, Δpi/ui. Optimization is generally continued until all Δpi/ui < 0.001. 
The quantities corij are the mutual uncertainty coefficients (previously called correlation 
coefficients). Their meaning will be explained below. 

Since atomic coordinates are dimensionless fractions of the cell constants, so are their 
s.u.’s. Thus the accuracy of atomic positions is the product of the coordinate s.u.’s with the 
cell constants. For an average structure analysis it is a few thousands of an Å. Due to their 
large number of electrons, heavy atoms contribute more to the total scattering than the lighter 
atoms with fewer electrons. Therefore the accuracy in position tends to be higher for the 
heavy atoms. The positions of hydrogen atoms with their single electron are only poorly 
defined in X-ray structure analysis. Their positional uncertainties are usually a few hundredths 
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to tenths of an Å. Much more precise locations of hydrogen atoms are obtained from neutron 
diffraction experiments.  On decreasing the temperature, the s.u.’s of the parameters Ukl

i 
generally decrease because the diffraction intensities at high values of sinθ/λ become stronger 
and thus easier to measure reliably.  

Note that the uncertainty matrix U depends on the model, including constraints and 
restraints. If a parameter pi is constrained, its uncertainty is necessarily zero. If a parameter or 
a derived quantity is restrained, its uncertainty u(pi) or u(dj) is approximately given by the 
weight of the restraint, namely as ~w-1/2. It is therefore important to report all restraints and 
constraints used in the structure model explicitly. 

The meaning of the mutual uncertainty coefficients corij is best illustrated graphically. 
Fig. 4 shows projections of S(p) onto the plane pi, pj for two different situations. On the left an 
example of positive mutual uncertainty is 
shown. The partial uncertainty matrix  
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ppU

is represented as an ellipsoid. In the left 
half of Fig. 4 the uncertainty in pi and pj is 
assumed to be about equal, whereas it is 
larger in the direction pi + pj and smaller in 
the direction pi – pj. This is due to a 
positive mutual uncertainty coefficient 
corij. On the right of Fig. 4 the case of 
negative mutual uncertainty is illustrated; 
the uncertainty is larger in the direction pi 
– pj and smaller in the direction pi + pj. 
Particularly strong mutual uncertainty exists between parameters related by a symmetry 
operation. Consider pi and pj = -pi , which are assumed to be related by a centre of symmetry 
or a twofold axis. Any change in pi implies a change of the same magnitude, but of opposite 
sign in pj. The mutual uncertainty coefficient between the two quantities is –1! Note that large 
s.u. and mutual uncertainty coefficients are often associated with a near-singular, ill-
determined matrix of normal equations N. The general expression for multidimensional 
ellipsoids analogous to those in Fig. 4 is   

pi

 
pUp ΔΔ= −1TS  

 
where Δp = p – popt are deviations from optimized parameters.  

Quite generally, mutual uncertainty has consequences on quantities derived from pi 
and pj. Suppose a bond distance depends on the difference between pi and pj. For positive 
correlation such a distance will be more accurately determined than indicated by u(pi) and 
u(pj) alone. The converse holds for negative mutual uncertainty. In general the influence of 
mutual uncertainty on the s.u. of a quantity d depending on the set of parameters p is given by  

)./)(()/()]([2 ppVpp ∂∂∂∂= dddu T  

The elements of the vector ∂d/∂p are ∂d/∂pi, i.e. derivatives of the derived quantity d with 
respect to the parameters pi that d depends on. 
 
 
 
 

Fig. 4. Parameter correlation. Left: positive correlation 
coefficient, the difference between pi and pj is better 
defined than their sum and than the individual 
parameters. Right: negative correlation coefficient, the 
sum of pi and pj is better defined than their difference and 
than the individual parameters. 

pj

pi 

pj

σi 

σj 

σi 

σj 
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7 Weighting schemes 
 

The quality of experimental observations varies widely depending on the quality of the 
crystal, the quality of the measuring equipment, experimental design and on the time and 
effort invested in an experiment. This is the reason for introducing a reliability or weighting 
factor w(hkl) in structure-factor least-squares calculations. The quantities finally used in such 
calculations are usually obtained in several steps. 

The first step considers individual reflections. The quantity Iobs(hkl) is not directly 
measured. It is the difference between the total measured intensity Itot and a suitably scaled 
background intensity sIB corrected for Lorentz- and polarization effects Lp (see ‘Data 
processing’ by Bernhard Spingler and Michael Wörle): 

.)(
Lp

sII
hklI Btot

o
−

=  

The outcomes of many measurements of the same quantity under the same conditions are 
never exactly the same, but always affected by some random error. The distribution of 
measurements and thus their reliability may either be determined experimentally by multiple 
measurements or approximated by a theoretical model. The distribution of intensity 
measurements or number of photons registered (k) is usually approximated by a Poisson 
distribution  

).exp(
!

)( I
k
IkP

k

−=  

The expectation or mean value of k is <k> = I, and the standard deviation of the mean is  
 

σ(I) = (I)1/2 . 
 
With this assumption and taking into account the propagation of uncertainties as described in 
the preceding section the s.u. of Iobs(hkl) becomes  
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When multiple measurements Iobs(hkl)i are available the mean intensity and its 
standard uncertainty become 
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If there is a choice between the two, the larger of the two quantities is used to define the 
weight 
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With modern area detectors some reflections and their symmetry equivalents may 
have been measured several times in different runs, whereas others may have been observed 
only once or twice. In such cases the multiple measurements are used to generate a model 
u'[Iobs(hkl)] which should be applicable to all observations irrespective of their frequency of 
observation. The frequently-observed reflections are divided into groups according to their 
intensity Iobs(hkl). Standard uncertainties ])([ hklIu obs  and  are averaged within 
each group. The group uncertainty u’2[Iobs(hkl)] is expressed in terms of these averages and of 

a correction term proportional to the group average 

)]([ hklIu obs

2)(hklI obs according to  
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The constants k and g are determined by least-squares optimization. If the u2[Iobs(hkl)] 
are bona fide estimates, the constant g should equal 0 and k should equal 1. Acceptable values 
of g are in the range of 0.0-0.1, of k in the range 0.7-1.3. Deviations from these approximate 
values indicate problems with the intensity measurements, scaling and absorption correction 
of the data or with some other systematic deficiency of the data.  

The weights in the structure-factor least squares are usually chosen as  
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To determine the constants a and b the data are divided into ca. 10 equally populated ranges 
of resolution and of the ratio |Fc|/|Fc(max)|. The constants are chosen such that in every range 
the GOF is as close to 1 as possible. Ideally a and b should be zero. In practice values of a ~ 
0.05 and b ≤ 1 indicate inadequacies of the model of the electron density. For very good data 
sets the deviation from ideal behaviour may be due to the use of spherical atomic scattering 
factors which neglect effects of chemical bonding. For disordered structures the model of 
disorder may be incomplete or insufficiently flexible. Finally one should also consider the 
possibility that a and b compensate for inadequacies of u’2 from the error model and thus for 
unrecognized systematic errors in the experiment and the data processing. 
 If results of the highest accuracy and precision attainable from a given data set are 
aspired to, the questions of weighting should be given careful consideration. It is nearly 
always possible to choose values of a and b which produce a GOF of 1. However, if this 
condition is fulfilled at the price of unreasonable values of the constants a, b, k and g the 
standard uncertainties of the atomic coordinates, anisotropic displacement parameters and of 
derived quantities such as bond lengths and angles should be considered with some suspicion. 
Comparison of distances and angles obtained from many independent studies of the same 
chemical compounds in the same crystal modification indicate indeed that their reported 
standard uncertainties are underestimated by a factor of 2-3. To give the reader an 
appreciation of the reliability of standard uncertainties from a least-squares refinement, it is 
recommended to report the values of the constants a, b, k and g together with R-factors and 
GOF-values. Unfortunately this is not a general practice. 
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