Factors affecting data quality

Scattering Efficiency

- Scattering Efficiency $=\frac{\Sigma \mathrm{f}^{2} \mathrm{~V}_{\text {crystal }}}{\mathrm{V}^{2} \text { cell }}$
- where:-
- f
= number of electrons per atom
- $\mathrm{V}_{\text {crystal }}$
$=$ volume of the crystal
- $\mathrm{V}_{\text {cell }}$
$=$ volume of the unit cell

Effect of disorder

Other factors

- Wavelength
- modify strong of interaction
- Rocking width/Mosaicity and size broadening
- Signal to noise
- Intensity of incident beam

Data: What do you want from it?

- Connectivity
- Hydrogen position
- Accurate bond lengths and angles
- Absolute configuration

Data: Any good?

- What does the diffraction look like?
- How well does it index?
- What does the reciprocal lattice look like?
- How well does it integrate?
- Space group determination ease?
- Structure solves easily?
- Structure refines well?

Look at the Diffraction Pattern

Fobs Map at $2.50 \AA$

Fobs Map at $2.0 \AA$

Fobs Map at $1.75 \AA ̊$

Fobs Map at $1.50 \AA$

Fobs Map at $1.25 \AA ̊$

Fobs Map at $1.00 \AA ̊$

Fobs Map at $0.75 \AA ̊$

$0.50 \AA$

ALS
 Fobs and Difference Map 0.5Å

Indexing

Reduced Unit Cells found:

Cell Refinement

L

Rotation Angle [${ }^{\circ}$]

Unit Cell:

Reflections:
\square Group 0: 8745 reflections
Gotolmage: D:Vrames\guest!LA2_19F\LA2_19F_02_0001.sfrm \quad.
More Reflections
Fewer Reflections
Tolerance:
0.23 , $1 \quad 1 \quad 1$

3193 Reflections selected for Refinement

- Show selected Reflections
- Show predicted Reflections

RMS XY [mm]: $0.012 \quad$ RMS angle ["]: 0.396

View the lattice

ALS

350	Initial Unit Cell:	$\begin{aligned} & a=10.50 \AA, ~ \alpha=90.04^{\circ}, ~ V=312 a \AA^{3} \\ & b=14.51 \AA, \beta=97.65^{\circ} \\ & c=20.65 \AA, \gamma=90.01^{\circ} \end{aligned}$							-
300	Bravais Lattice	FOM		b [${ }_{\text {A }}$]	c [${ }_{\text {A }}$]	$\alpha\left[{ }^{\circ}\right]$	$\left.\beta{ }^{\circ}\right]$	$\mathrm{Y}\left[{ }^{\circ}\right]$	
	Cubic F	0.01	28.37	26.25	26.27	112.92	81.85	134.97	
	Cubic I	0.01	21.89	17.91	25.23	66.33	43.97	78.04	
	Cubic P	0.01	10.50	14.51	20.65	90.04	97.65	90.01	
250	Hexagonal P	0.01	10.50	14.51	20.65	90.04	97.65	90.01	
	Rhombohedral R	0.01	17.91	24.39	26.25	119.59	74.091	108.56	
	Tetragonal I	0.01	10.50	14.51	43.71	70.65	83.43	90.01	
	Tetragonal P	0.02	10.50	14.51	20.65	90.04	97.65	90.01	
	Orthorhombic F	0.02	10.50	30.86	41.25	92.40	96.97	70.09	
200	Orthorhombic I	0.02	10.50	14.51	43.71	109.35	96.57	90.01	
	Orthorhombic C	0.05	10.50	41.25	14.51	89.96	90.01	96.97	
	Orthorhombic P	0.04	10.50	14.51	20.65	90.04	97.65	90.01	
	Monoclinic C	0.04	41.25	10.50	14.51	90.01	90.04	83.03	
150	Monoclinic P	0.89	10.50	14.51	20.65	90.04	97.65	90.01	
	Triclinic P	1.00	10.50	14.51	20.65	90.04	97.65	90.01	

Resolution Limit [\hat{A}]: 0.680

Unit Cells:

Integration

Sadabs

Laue group numbers:

```
[1] -1
[2] 2/m (Y unique)
[3] mmm
[4] 4/m (Z unique)
[5] 4/mmm (Z unique)
[6] -3 (rhombohedral axes)
[7] -3 (Z unique)
```

[8] -3 m (rhombohedral axes)
[9] -31m (Z unique)
[10] -3 mi (Z unique)
[11] $6 / \mathrm{m}$ (Z unique)
[11] $] 6 / \mathrm{m}$ (Z unique)
$6 / \mathrm{mm}$ (Z unique)
$[12]$
$[13]$
6
[14] $\mathrm{m}-3 \mathrm{~m}$

	2	R (int)	Incid.	factors	Diffr	factors	,		I/s (17m)	Total	,
1	0.0	0.0468	1.823	- 2.083	0.970	- 1.028	0.909	0.0253	39.6	3339	2672
2	0.0	0.0346	0.784	- 1.029	0.967	- 1.028	0.994	0.0253	39.6	12643	10362
3	-45.0	0.0583	0.730	- 1.064	0.967	- 1.028	0.987	0.0253	39.6	14472	9769
4	-45.0	0.0539	0.779	- 1.124	0.968	- 1.022	0.933	0.0253	39.6	14518	9868
5	-45.0	0.0543	0.758	- 1.134	0.967	- 1.028	0.966	0.0253	39.6	14574	10003

An Office of Science User Facility
Office of Science

XPREP

SPACE GROUP DETERMINATION

Lattice exceptions	P	A	B	C	I	F	obv	Rev	A 71
$N($ total $)=$	0	29768	29796	29818	29732	44691	39723	39679	59546
$N(i n t>3 s i g m a)=$	0	19166	19388	19542	19379	29048	25684	25994	38832
Mean intensity =	0.0	10.1	10.2	10.0	10.2	10.1	9.8	10.3	10.2
Mean int/sigma $=$	0.0	9.9	9.9	10.0	9.9	9.9	9.7	10.0	9.9

Crystal system M and Lattice type P selected Mean $\left|E^{*} E-1\right|=0.922$ [expected .968 centrosym and .736 non-centrosym] Chiral flag NOT set

Systematic absence exceptions:

	-21-	-a-	-C	-n
N	44	1275	1284	1283
N I > 3s	38	525	1	524
$\langle\mathrm{I}\rangle$	29.2	11.0	0.2	10.9
$\langle\mathrm{I} / \mathrm{S}\rangle$	19.4	8.4	0.5	8.3

Identical indices and Friedel opposites combined before calculating R(sym) Option Space Group No. Type Axes CSD $R(s y m) N(e q)$ Syst. Abs. GFOM
[A] $\mathrm{P} 2 / \mathrm{C}$
$[\mathrm{B}] \mathrm{PC}$
\# 13 centro
1
292
0.032
9557
$0.5 /$
8.31 .82
option [A] chosen

XPREP

INTENSITY STATISTICS FOR DATASET \# 1 LA.2_19f_0m.hk 1

Resolution	\#Data	eor	\% Complete	Red	Mean I M	Mean I/s	Rmerge	Rsigma
Inf - 2.89	155	158	98.1	10.60	46.62	77.36	0.0249	0.0105
2.89-1.91	368	368	100.0	12.00	31.71	72.61	0.0273	0.0098
1.91-1.50	514	514	100.0	11.60	20.09	56.43	0.0367	0.0121
$1.50-1.31$	510	510	100.0	8.62	12.34	42.87	0.0315	0.0157
$1.31-1.18$	562	562	100.0	8.52	10.59	37.78	0.0356	0.0181
1.18-1.10	487	487	100.0	8.38	9.17	32.92	0.0408	0.0209
1.10-1.03	559	559	100.0	7.86	7.99	28.29	0.0489	0.0252
$1.03-0.98$	491	492	99.8	6.23	6.35	20.44	0.0629	0.0354
0.98-0.93	619	619	100.0	5.47	5.19	16.85	0.0747	0.0453
0.93-0.90	433	433	100.0	4.66	4.51	13.70	0.0820	0.0562
$0.90-0.87$	481	481	100.0	4.22	3.60	11.06	0.0959	0.0695
$0.87-0.84$	578	578	100.0	3.96	3.37	9.95	0.1016	0.0788
0.84-0.81	637	637	100.0	4.01	3.13	9.08	0.1151	0.0858
$0.81-0.79$	507	507	100.0	3.90	2.97	8.42	0.1270	0.0949
$0.79-0.77$	544	544	100.0	3.88	2.63	7.62	0.1469	0.1073
$0.77-0.76$	300	300	100.0	3.82	2.53	6.96	0.1472	0.1160
$0.76-0.74$	631	631	100.0	3.80	2.39	6.62	0.1653	0.1238
$0.74-0.72$	715	715	100.0	3.65	2.26	6.13	0.1831	0.1365
$0.72-0.71$	380	380	100.0	3.60	2.01	5.19	0.2015	0.1579
$0.71-0.70$	391	391	100.0	3.53	2.04	5.29	0.2035	0.1619
$0.70-0.69$	452	472	95.8	3.20	1.76	4.63	0.2381	0.1900
$0.79-0.69$	3413	3433	99.4	3.65	2.25	6.13	0.1779	0.1369
Inf - 0.69	10314	10338	99.8	5.76	7.13	20.47	0.0464	0.0371

Merged [A], lowest resolution $=10.41$ Angstroms

Determination of unit-cell contents
Formula: CdC40H40O10N2
Formula weight $=821.16$
Tentative z (number of formula units/cell) $=4.0$ giving rho $=1.749$, non-H atomic volume $=14.7$ and following cell contents and analysis:

C	160.00	58.51%	H	160.00	4.91%
N	8.00	3.41%	0	40.00	19.48%

$F(000)=$
1688.0
? -K(a7pha) radiation
$\mathrm{Mu}(\mathrm{mm}-1)=$
0.00

Monoclinic

DETERMINATION OF REDUCED (NIGGLI) CELL

Transformation from original cell (HKLF-matrix):
$0.0000-1.0000 \quad 0.0000$
1.0000
0.0000
0.0000
0.0000
0.0000
1.0000
unitcell:
6.812
11.631
12.200
90.34
90.00
90.00

Niggli form:
a.a =
46.40
b.b =
135.28
c. $C=$
148.84
b. $c=$
-0.85
a.c =
0.00
a.b =
0.00
search for higher metric symmetry
Identical indices and friedel opposites combined before calculating R(sym)

Option A	0.343 d		THOR HOM	C P-7a		(sym)	. 518]
Cel1: 6.812	11.631	12.200	90.34	90.00	90.00	Vol		966.55
Matrix: 0.0000	-1.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000
option B: FOM	0.000 d		OCLINIC	90.34		sym)	0.016	
Ce11: 11.631	6.812	12.200	90.00	90.34	90.00	volum		966.55
Matrix: 1.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	1.0000

option C: FOM $=0.343$ deg. MONOCLINIC P-7attice $R(s y m)=0.544$ [4319] $\begin{array}{lllllllll}\text { Ce11: } & 6.812 & 11.631 & 12.200 & 90.34 & 90.00 & 90.00 & \text { volume: } & 966.55\end{array}$ Matrix: $0.0000-1.0000 \quad 0.0000-1.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000-1.0000$

option B selected

Indexing

Reduced Unit Cells found:

\prodMethod: Difference Vectors Score: 1.33 $a=14.20 \AA, \quad \alpha=69.50^{\circ}, ~ V=9000 \delta^{3}$, $b=21.718, \quad \beta=89.92^{\circ}$ $c=31.17 \AA, \quad \gamma=89.89^{\circ}$	HKL histogram:
	0.1: 93.3\% [2695/2890)
	0.2: 94.0\% [2716/2890]
	0.3: 94.0\% (2716/2890)
Method: Fast Fourier Transform	HKL histogram:
Score: 1.34	0.1:93.9\% (2713/2890)
$\begin{aligned} & a=14.21 A, \quad \alpha=106.68^{\circ}, V=89874 \\ & b=25.958, \beta=90.09^{\circ} \end{aligned}$	0.2:94.1\% [2720/289]
$\mathrm{c}=31.02 \mathrm{~A}, \mathrm{y}=123.17^{*}$	0.3:94.1\% [2720/288

Cell Refinement

L

Rotation Angle [${ }^{\circ}$]

Unit Cell:

Reflections: Group 0: 2890 reflections
\square
Go to Image: D: \irames\guestla2_32b\la2_32b_02_0001.sfm0.22

799 Reflections selected for Refinement
O Show selected Reflections

- Show predicted Reflections

RMS XY [mm]: 0.012
RMS angle [']: 0.661

Took:
Refine
Histograms...
Transformations...
Δ Finish \quad Accept \quad Cancel

Lattice Choice

Position [pixels]
Intensity [counts]
Intensity [coun
HKL index
Resolution [Å]
2Theta ["]

Image Header Tool Editor Cursor Position

Initial Unit Cell:	$\begin{aligned} & a=14.25 \AA, \alpha=106.66^{\circ}, V=9071 \AA^{3} \\ & b=26.028, \beta=90.07^{\circ} \\ & c=31.14 \AA, \gamma=123.20^{\circ} \end{aligned}$					
Bravais Lattice	FOM	a [${ }_{\text {® }}$]	b b ${ }_{\text {B }}$]	c [Å] α [
Cubic F	0.01	34.26	46.25	34.23100 .96	49.171	116.55
Cubic I	0.01	34.23	26.02	31.2772 .80	46.54	91.96
Cubic P	0.01	14.25	21.77	31.14110 .09	90.07	90.01
Hexagonal P	0.02	21.77	31.14	14.2590 .07	90.011	110.09
Rhombohedral R	0.01	14.25	26.02	89.6078 .85	99.071	123.19
Tetragonal I	0.01	14.25	21.77	60.1889 .647	76.39	90.01
Tetragonal P	0.01	14.25	21.77	31.14110 .09	90.07	90.01
Orthorhombic F	0.01	26.02	26.02	84.2945 .128	81.29	66.40
Orthorhombic I	0.02	14.25	21.77	60.18 90.3610	03.61	90.01
Orthorhombic C	0.48	21.77	58.49	$14.25 \quad 89.92$	90.01	90.37
Orthorhombic P	0.02	14.25	21.77	31.14110 .09	90.07	90.01
Monoclinic C	0.43	58.49	21.77	14.2590 .01	90.08	89.63
Monoclinic P	0.80	21.77	14.25	31.14 90.0711	10.09	90.01
Triclinic P	1.00	14.25	21.77	31.14110 .09	90.07	90.01

View of the Reciprocal Space

undumblduduldu.

Both Orientations

Reflections: GGroup 0:2389 reflections
Go to Image: D: ItramesIguestlaz_32blaz_32b_02_0001.stimm D
More Reflections Fewer Rellect
Tolerance: 0.22
789 Reflections selected for Refinement

Reflections: \square Group 1: 1414 reflections
Go to Image: D: Sliameslguestlaz_32blaz_32b_02_0001.stim \quad.
More Reflections Fewer Reflections

Show selected Reflections

- Show predicted Reflections

RMS WY [mm] n/a RMS angle ["] n/a
Tools: Refine Histograms... Transtormations...

The Crystal is a Reticular Twin

- Integrate both components
- TWINABS- HKLF 4 and 5

1	0	0	28.20	1.50	1	1	0	0	28.4078	1.61155
2	0	0	2215.38	30.80	-2	1	1	2879.34	40.0417	-2
3	0	0	869.51	12.10	2	0	0	2879.34	40.0417	-1
4	0	0	28.90	5.00	3	0	0	892.362	14.0204	-1
5	0	0	15.30	6.30	-4	2	2	14.4204	12.3454	-2
-5	1	0	133.29	10.10	4	0	0	14.42204	12.3454	-1
-4	1	0	205.88	7.10	5	0	0	15.6010	6.59970	1
-3	1	0	225.38	7.40	-5	1	0	130.455	10.8995	1
-2	1	0	4917.21	51.19	-4	1	0	206.247	7.58213	-1
-1	1	0	1636.54	11.70	-3	1	0	233.4331	8.34012	1
0	1	0	2938.01	64.69	-2	0	1	6414.16	70.8154	-2
1	1	0	9999.00	66.19	-2	1	0	6414.16	70.8154	1
2	1	0	189.98	5.50	-1	1	0	1639.80	14.4143	1
3	1	0	211.38	6.10	0	1	0	3744.09	66.1207	-2
4	1	0	153.08	8.00	0	1	0	3744.09	66.1207	1
5	1	0	34.00	13.50	-1	1	0	9999.99	106.633	-1
-5	2	0	60.19	11.40	-2	2	1	234.163	5.60337	-2

The Crystal is a Reticular Twin

- HKLF 4 data through XPREP
- Potentially go back to TWINABS and XPREP
- Solve on HKLF 4 data
- Refine with both HKLF 4 and 5 data

Types of Twinning

- Merohedral
- The twinning operator is part of the Laue Class not the point group
- Racemic twinning e.g looks like $2 / m$ but is 2
- Tetrahedral, Trigonal/hexagonal, Cubic e.g. looks like $4 / \mathrm{mmm}$ but is $4 / \mathrm{m}$

- Pseudo-merohedral

- The twinning operator is part of the symmetry of the higher cell e.g. look orthorhombic but is monoclinic.
- Reticular
- e.g obverse/reverse twinning, false centred cell.
- Non-Merohedral
- The twinning operator transforms between the two orientations can be anything but commonly 180응

Indication of twinning

- Multiple diffraction patterns
- |E*E-1| smaller than would be expected
- Problems choosing spacegroup
- Problems solving structure
- Large residual peak in non-sensible places
- K-values for weak data
- Disagreement reflects Fobs >> Fcalc
- Weighting scheme large
- Poor refinement R1 high than expected

Not Twinned?

search for higher metric symmetry
Identical indices and Friedel opposites combined before calculating R(sym)

option B selected

SPACE GROUP DETERMINATION

Lattice except	P	A	B	C	I	F	obv	Rev	A 71
$N(t o t a l)=$	0	830	831	831	833	1246	1099	1104	1657
N (int>3sigma)	0	687	679	698	688	1032	838	902	1366
Mean intensity	0.0	38.3	38.4	36.0	38.1	37.6	24.5	37.8	37.9
Mean int/sigma	0.0	23.4	23.3	23.1	23.2	23.3	18.7	23.4	23.3

Crystal system A and Lattice type P selected
Mean $\left|E^{*} \mathrm{E}-1\right|=0.783$ [expected .968 centrosym and .736 non-centrosym]
Chiral flag Not set
Systematic absences not required for triclinic
Identical indices and friedel opposites combined before calculating R(sym)
option space Group No. Type Axes GSD $R(s y m) N(e q)$ Syst. Abs. GFOM
[A] $\mathrm{P}-1$
$[\mathrm{~B}] \mathrm{P1}$
$\begin{array}{lrl}\# & 2 & \text { centro } \\ \# & 1 & \text { chiral }\end{array}$
$18646 \quad 0.000$
$0 \quad 0.0 / 23.3$
3.87
option [A] chosen

LST file indications

Analysis of variance for reflections employed in refinement $k=$ Mean[Fo^2] / Mean[Fc^2] for group
$F C / F C(\max)$
0.000
0.012
0.017
0.022
0.028
0.034
0.041
0.051
0.065
0.093
1.000
Number in group 6329. 5120. 5450. 6202. 5301.
5139.
5726.
5484.
1.050
1.019
1.003
K
2.857
1.371
1.171
1.069
1.049
1.026
1.049
1.037
1.040

1. 094
Resolution(A)
0.75
0.78
0.81
0.85
0.89
0.95
1.02
1.12
1.28
1.61 inf
Goof
0.828
$0.830 \quad 0.856$
0.888
$0.917 \quad 0.949$
0.975
1.087
2. 593
K
1.075
1.043
3. 051
1.048
4. 046
5. 045
6. 069
7. 074
1.086
1.107
R1
0.255
0.221
0.187
$0.159 \quad 0.133$
0.111
0.104
0.101

Recommended weighting scheme: wGHT
0.1327
that in most cases convergence will be faster if fod weights (e.g. .he only then shouid the above recommended values be used

Most Disagreeable Reflections (* if suppressed or used for Rfree)

h	k	1	Foh2	FCN 2	De7ta (F/2)/esd	$F C / F \subset(\max)$	Resolution(A)
-1	0	5	3306.90	195.66	9.72	0.015	4.70
1	-6	3	17930.58	317.53	9.17	0.020	4.03
-5	-1	1	16842.12	2148.40	9.15	0.051	3.12
-3	0	11	3588.74	35.68	8.97	0.007	2.06
5	-6	3	3787.50	78.23	8.88	0.010	2.52
1	6	3	20125.86	317.42	8.54	0.020	4.03
3	-7	3	6924.66	913.74	8.38	0.033	3.03
-1	11	3	14265.78	2393.98	7.84	0.054	2.48
3	11	1	6296.08	324.45	7.77	0.020	2.35
3	-11	1	7107.52	326.79	7.73	0.020	2.35
-3	13	1	3836.08	113.46	7.70	0.012	2.05
-1	-11	1	9117.20	1395.21	7.64	0.041	2.59
-10	-1	2	2209.62	66.25	7.53	0.009	1. 57
-1	11	1	10622.40	1398. 51	7.52	0.041	2.59
-7	-10	3	4039.27	1011.37	7.42	0.035	1.74
3	15	1	4619.09	830.09	7.42	0.032	1.81
-1	-11	3	13777.74	2380.37	7.41	0.054	2.48
-1	13	11	3326.11	57.67	7.32	0.008	1. 57
-1	15	1	8343.10	1256.92	7.30	0.039	1.91
-1	-7	3	29590.46	3135.91	7.24	0.061	3.60
3	0	9	3820.77	770.17	7.07	0.016	7.47

INS format for TWIN

```
TITL gac440a in P2(1)
ZERR 
LATT --1
SFAC C H NO NI
DISP Ni 0.19064 1.30243 5779.11
DISP 
DISP N -0.00306 0.00403 23.92
DISP C -0.00202 0.00197 13.60
DISP H 0.00000 0.00000 0.67
UNIT 512 440 104 48 24
TEMP -123
SIZE 0.50 0.30 0.20
REM b7ue block
REM data cut at 0.81 angstrom
L.S. 4
BOND $H
ACTA
FMAP 2
PLAN 10
SIMU 0.016 N1S > C20S
DELU 0.004 N1S > C20S
ISOR 0.008 N22 C109 C314
ISOR 0.01 C119 C120 C206 C220 C305 C357
ISOR C32 C33 C204 C219 C228 C246 C251 C141 036 C304 C311 C327
FLAT N2S > Cl0S
FLAT N45 > C205
FLAT N3S > Cl5S
SADI N4S C165 N4S C20S
SADI Cl65 C175 C175 C185 C185 C195 C195 C205
```

TWIN $100000-10000-110$
BASF $\quad 0.03796 \quad 0.52811 \quad-0.00368$

Reduced Unit Cells found:

Bravais Lattice	FOM	a [A]	b [${ }_{\text {A }}$]	c [${ }_{\text {A }}$]	$\alpha\left[{ }^{\circ}\right]$	$\beta\left[^{\circ}\right]$	$\mathrm{Y}{ }^{\circ}$]
Cubic F	0.01	22.17	22.15	22.18	70.39	10.53	71.92
Cubic I	0.01	18.11	17.94	18.25	60.25	59.35	60.73
Cubic P	0.19	12.64	12.78	13.01	89.93	89.85	89.79
Hexagonal P	0.01	12.64	12.78	13.01	90.07	89.85	90.21
Rhombohedral R	0.21	17.94	18.11	22.24	91.31	89.531	19.27
Tetragonal	0.01	12.64	12.78	31.60	66.12	66.48	89.79
Tetragonal P	0.35	12.64	12.78	13.01	89.93	89.85	89.79
Orthorhombic F	0.01	17.94	18.00	47.82	41.39	11.55	89.37
Orthorhombic I	0.01	12.64	12.78	31.60	13.88	113.52	89.79
Orthorhombic C	0.35	17.94	18.00	13.01	90.15	89.94	89.37
Orthorhombic P	0.56	12.64	12.78	13.01	89.93	89.85	89.79
Monoclinic C	0.31	18.00	17.94	13.01	90.06	90.15	90.63
Monoclinic P	0.63	12.64	13.01	12.78	90.07	90.21	89.85
Triclinic P	1.00	12.64	12.78	13.01	89.93	89.85	89.79

Reflections: \square Group 0: 1887 reflections\square

Go to Image: D:StramesiguestMCIC_D4MMCIC_D4_01_0001.sfrm -

650 Reflections selected for Refinement
Show selected Reflections

Unit Cell:
$\prod^{a=12.65 \AA, ~} \alpha=90.00^{\circ}, V=21028^{3}$ $b=12.77 \AA^{\alpha}, \quad \alpha=90.00^{\circ} 7^{\circ}, V=21028^{3}$

\square Unit cell

\qquad 12.667 ± 0.008

Parameter 89.91

```
arameters:
```

 $\frac{\mathrm{V}\left[\beta^{3}\right]}{\text { Domain translation }}$

$\frac{x}{x}[\mathrm{~mm}]$
0.00

Reflections:
\square Group 1: 883 reflections \bullet

Gotolmage: D: \irames SguestMCIC_D4MMCJC_D4_01_0001.strm \quad

Tolerance:

279 Reflections selected for Refinement

- Show selected Reflections
- Show predicted Reflection
$\begin{array}{llllll}12.646 & 12.991 & 12.749 & 90.00 & 90.16 & 90.00\end{array}$
5063 Reflections read from file junk.hk 1 ; mean ($I /$ sigma) $=13.23$

search for higher metric symmetry
Identical indices and Friedel opposites combined before calculating R (sym)

option D selected

Supercells

$\mathrm{Al}(\mathrm{O} 3 \mathrm{PCH} 2 \mathrm{CH} 2 \mathrm{PO} 3)(\mathrm{OH})$

(H3NCH2CH2NH3)
Monoclinic $\mathrm{P}_{1} / \mathrm{m}$

$$
\begin{array}{ll}
\mathrm{a}=8.052 & \alpha=90 \\
\mathrm{~b}=7.029 & \beta=98.441 \\
\mathrm{c}=8.977 & \gamma=90
\end{array}
$$

Volume $=503.2$

Attfield et al

```
SPACE GROUP DETERMINATION
```

Lattice exceptions:	P	A	B	C	I	F	obv	Rev	A17
N (tota7) $=$		0	2532	2522	2532	2537	3793	3366	3367
N (int>3sigma) $=$	0	1627	1633	1616	1578	2438	2148	2172	3262
Mean intensity $=$	0.0	21.1	20.6	21.1	20.9	20.9	20.6	20.8	20.5
Mean int/sigma $=$	0.0	13.2	13.4	13.1	13.3	13.2	13.3	13.3	13.2

Crystal system M and Lattice type P selected
Mean $\left|E^{*} E-1\right|=1.014$ [expected .968 centrosym and .736 non-centrosym]
Chiral flag NOT set
systematic absence exceptions:

		$-21-$	$-a-$	$-C-$	$-n-$
N		6	144	146	142
N	$I\rangle 3 s$	5	53	53	0
N		213.2	19.3	18.9	0.3
$\langle I\rangle$	27.6	11.8	11.6	0.6	

Identical indices and Friedel opposites combined before calculating $\mathrm{R}(\mathrm{sym})$

Option Space Group	No.	Type Axes	CSD	$R(s y m)$	$N(e q)$	Syst. Abs.	GFOM			
[A] $\mathrm{P} 2 / \mathrm{n}$	\#				centro	1	292	0.036	2086	$0.6 / 11.6$
$[\mathrm{~B}] \mathrm{Pn}$		$\#$	7	non-cen	1	226	0.036	2086	$0.6 / 11.6$	9.09

option [A] chosen

Supercells

$\mathrm{Al}(\mathrm{O} 3 \mathrm{PCH} 2 \mathrm{CH} 2 \mathrm{PO} 3)(\mathrm{OH})(\mathrm{H} 3 \mathrm{NCH} 2 \mathrm{CH} 2 \mathrm{NH} 3)$

Lab Cell
Monoclinic $\mathrm{P}_{1} / \mathrm{m}$
$\mathrm{a}=8.052$
$\alpha=90$
$\mathrm{b}=7.029$
$\beta=98.441$
$\gamma=90$
$\mathrm{c}=8.977$
Volume $=503.2$

Synchrotron Cell
Monoclinic $\mathrm{P}_{1} / \mathrm{n}$
$a=11.142 \quad \alpha=90$
$\mathrm{b}=7.008 \quad \beta=96.24$
$\mathrm{c}=12.903$
$\gamma=90$
Volume $=1001.50$

Supercells

Lattice exceptions:	P	A	B	C	I	F	Obv	Rev	All
$\mathrm{N}($ total $)=$	0	2987	2979	2982	2987	4474	3965	3964	5956
$\mathrm{~N}($ int $>$ 3sigma $)=$	0	1639	1233	1592	1583	2232	2163	2171	3233
Mean intensity $=$	0.0	22.2	8.3	22.1	19.3	17.5	21.2	20.7	20.9
Mean int/sigma $=$	0.0	6.0	3.9	5.9	5.8	5.3	6.0	5.9	5.9

Supercells

Rosseinsky et al

NiC28H14O7N2
Trigonal P3
$a=19.285$
$\alpha=90$
$b=19.285$
$\beta=90$
$\mathrm{C}=11.270$
$\gamma=120$
Volume $=3665.9$

Rosseinsky et al

Supercells

Supercells

NiC28H14O7N2
Trigonal P3
$a=19.285 \quad \alpha=90$
$b=19.285 \quad \beta=90$
c = $11.270 \quad \gamma=120$
Volume $=3665.9$

NiC28H14O7N2
Trigonal P3
$a=33.521 \quad \alpha=90$
b $=33.521$
$\beta=90$
c $=11.302$
$\gamma=120$
Volume $=10998$

Supercells

Supercells

