Porosity in Metal-organic compounds

&

Introduction to Reticular Chemistry of Metal-organic frameworks (MOFs)

Alexander Schoedel

March 12th 2015

Porosity in Metal-organic compounds

Werner complexes

- zigzag channels occupied with benzene
- Barrer (1969): Porosity towards N₂, O₂, noble gases and hydrocarbons.

Christian et al., J. Am. Chem. Soc. 1957, 79, 5870; Barrer et al., J. Chem. Soc. A 1969, 1717.

Hofmann clathrates

$[Ni(CN)_2(NH_3)] \cdot C_6H_6$

- General formula: $[M^1(NH_3)_2M^2(CN)_4]$ ·G
- Firstly prepared in 1897
- Structure determination by Powell in 1952
- Encapsulation of aromatic guests such as aniline, benzene, thiophene or pyrrole.

Hofmann et al., Z. Anorg. Chem. 1897, 15, 204; Powell et al., J. Chem. Soc. 1952, 319; Iwamoto et al., Inorg. Chim. Acta 1968, 2, 313

Hofmann clathrates

 α, ω -diaminoalkanes

- Selective encapsulation of guests through linker length control.
- Here *o*-toluidine

```
Cd[NH_2(CH_2)_6NH_2]Ni(CN)_4·0.92C<sub>7</sub>H<sub>9</sub>N
```


Mathey et al., Inorg. Nucl. Chem. Lett. **1977**, 13, 1; Mathey et al., Can. J. Chem. **1977**, 55, 17; Iwamoto et al., J. Incl. Phenomena **1984**, 2, 351; Iwamoto et al., Chem. Lett. **1985**, 14, 1659.

Coordination polymers

Saito et al., Bull. Chem. Soc. Jap. 1959, 32, 741; Bull. Chem. Soc. Jap. 1959, 32, 1216; Bull. Chem. Soc. Jap. 1959, 32, 1221.

Coordination polymers – Deliberate Design

[Cu(-CN)₄]⁺ and [C(C₆H₄CN)₄] tetrahedral building blocks

Robson (1989)

 ${Cu[C(C_6H_4CN)_4]}^+$ dia-b

- adamantine cavity ~ 700Å³
- charge balancing BF₄⁻ counteranions
- exchangeable through PF₆⁻

Robson et al., J. Am. Chem. Soc. 1989, 111, 5962; J. Am. Chem. Soc. 1990, 112, 1546; Iwamoto et al., Chem. Lett. 1988, 17, 1729.

Coordination polymers – Deliberate Design

 $[Cu(-CN)_4]^+$ - tetrahedral building blocks tcp (porphyrin) – square planar building blocks

[Cu^{II}(tcp)Cu^IBF₄] **Robson (1994)** pts

pts-c 2-fold interpenetrated

Robson et al., Nature **1994**, 369, 727.

Interpenetration in PtS nets

[Cu(-PY)₄]⁺ - tetrahedral building blocks tpp (porphyrin) – square planar building blocks

[Cu^{II}(tpp)Cu^IBF₄] **pts**

• Single **pts** net

• Bulky PY groups prevent interpenetration

Functional coordination polymers

Fujita (1994)

[Cd(bipy)₂(NO₃)₂] sql

First ever catalytic reaction in a CP!

sql-a

- Non-interpenetrated net
- Clathrate with *o*-dibromobenzene
- Cyanosilylation of benzaldehyde and imines

Fujita et al., J. Am. Chem. Soc. 1994, 116, 1151.

The first MOF

Yaghi et al., J. Solid State Chem. 1995, 117, 256.

[M(bipy)₂(SiF₆)] – primitive cubic net

Zaworotko (1995) Kitagawa (2000) Zaworotko (2013) Eddaoudi (2014)

- 8×8 Å channels
- ~50% of empty space
- unstable upon evacuation
- Cu-analogue: surface area of 1337 m²/g
- exceptional CO2 uptake/separation

pcu

Zaworotko et al., Angew. Chem. Int. Ed. Engl. **1995**, 34, 2127; Kitagawa et al., J. Am. Chem. Soc. **2002**, 124, 2568; Zaworotko et al., Nature **2013**, 495, 80; Eddaoudi et al., Nat. Commun. **2014**, 5.

Discovery of microporosity in MOFs – MOF-2

Yaghi (1998)

[Zn(BDC)]·(DMF)·(H₂O)] sql

- additional stability through strong hydrogen bonding interactions
- voids filled with guest molecules, (DMF) and H₂O.

Yaghi et al., J. Am. Chem. Soc. 1998, 120, 8571.

Discovery of microporosity in MOFs – MOF-2

- Guest removal: evacuation, heat
- Isotherm with N₂ at 77K
- Type I behavior
- Langmuir area: 270 and 310 m²/g.

High surface area MOFs – MOF-5

with

Yaghi et al., Nature **1999**, 402, 276.

High surface area MOFs – MOF-5

- Robust framework
- Type I isotherm (N₂, 77K)
- Langmuir surface area of 2,900 m²/g, pore volume of 1.04 cm³/g.
- modular structure
- Control of linker length and functionality

Yaghi et al., Nature 1999, 402, 276.

Introduction to Reticular Chemistry of Metal-organic frameworks (MOFs)

Reticular Chemistry

Definition: Reticular chemistry is concerned with **linking** of **molecular building blocks** (organic molecules, inorganic clusters, dendrimers, peptides, proteins, ...) into **predetermined structures** in which such units are **repeated** and are held together by **strong bonds**.

Strong bonds and inorganic clusters are important

Yaghi et al., Acc. Chem. Res. 2005, 38, 176; Science 2013, 341, 1230444.

The Cambridge Structural Database (CSD)

Olga Kennard (1965)

- crystallographic information files (.cif) for each structure
- Six letter codes
- 2-D diagram and 3-D visualizer •
- Literature reference
- Many search capabilities

Allen, Acta Crystallogr. B 2002, 58, 380; Allen et al., Angew. Chem. Int. Ed. 2014, 53, 662; http://www.ccdc.cam.ac.uk/pages/Home.aspx

Secondary Building Units (SBUs)

Definition: SBUs are defined as an aggregate of metal ions together with multi-dentate functional groups, such as carboxylates, into clusters.

SBUs can then serve as rigid vertices propagated into a framework by rigid organic struts and due to strong bonding account for a high structural stability.

Yaghi et al., Acc. Chem. Res. 2001, 34, 319-330.

Points of extension

Definition: Points of extension in MOF chemistry means the number of possible connections between one metal cluster to other metal clusters through organic linkers.

Coordination chemistry defines the geometry of the SBU.

Three up to 24 points of extension.

Yaghi et al., Chem. Soc. Rev. 2009, 38, 1257; Zaworotko et al., Chem. Sci. 2014, 5, 1269.

Three points of extension – PNMOF-3

Yaghi and Matzger (2006)

conventional: IRMOF-3

Yaghi, Matzger et al., Angew. Chem. Int. Ed. 2006, 45, 2553-2556; IRMOF-3: Yaghi et al., Science 2002, 295, 469-472.

Three points of extension

- SrSi₂ (srs) net
- Eight fold interpenetrated srs is self-dual
- Non-planar geometry generates srs rather than hcb.

Domasevitch et al., Dalton Trans. 2006, 3772-3776.

Four points of extension – MOF-2

Yaghi (1998)

- paddlewheel is long and well known: Cu₂(OAc)₄, Cr₂(OAc)₄, Rh₂(OAc)₄.
- Langmuir area: 270 and 310 m²/g.

Yaghi et al., J. Am. Chem. Soc. **1998**, 120, 8571; **Discrete clusters:** A. F. Wells, Structural Inorganic Chemistry **5th ed.**, Oxford University Press: Oxford, 1984; Schoening et al., Nature **1953**, 171, 36-37.

The discovery of open metal sites (OMS)

Yaghi (2000)

- First permanently porous material with OMS
- Langmuir area: 560 m²/g

Yaghi et al., J. Am. Chem. Soc. 2000, 122, 11559-11560.

Why are OMS important?

Chen and Yaghi (2005)

- Topology: 4,4-c net (**nbo**)
- Deconstruction to 3,3,4-c net (**fof**)
- Linker to linker crosslinked **kgm** nets.
- Langmuir area: 1830 m³/g
- Enhanced H₂-sorption at 77K: 2.47wt%

Chen, Yaghi *et al., Angew. Chem. Int. Ed.* **2005**, *44*, 4745-4749; **Kagomé:** Zaworotko *et al., Angew. Chem. Int. Ed.* **2002**, *41*, 2821-2824; **Deconstruction:** O'Keeffe, Yaghi, *Chem. Rev.* **2012**, *112*, 675-702.

HKUST-1 – A prototypal MOF

Williams et al., Science **1999**, 283, 1148-1150; Yaghi et al., Inorg. Chem. **2011**, 50, 9147-9152.

HKUST-1 – Features

BET (Brunauer-Emmett-Teller) area:

- Original: 700 m²/g
- Full activation: 1800 m²/g

High methane storage capacity (65 bar):

Yaghi et al., J. Am. Chem. Soc. 2005, 127, 17998-17999; Hupp, Farha, Yildirim et al., J. Am. Chem. Soc. 2013, 135, 11887-11894.

Six points of extension – MOF-3

Yaghi et al., J. Am. Chem. Soc. 1998, 120, 2186-2187.

Six points of extension – MOF-5

- Robust framework
- Type I isotherm (N₂, 77K)
- Langmuir surface area: 2,900 m²/g.
- Pore volume: 1.04 cm³/g.
- modular structure
- Control of linker length and functionality

Replacement of carboxylates

X.-M. Chen (2008)

- Symmetry reduction to tetragonal.
- Langmuir surface area:
 1,900 m³/g.
- Pore volume:
 0.58 cm³/g.

Chen et al., Inorg. Chem. 2008, 47, 1346-1351.

Linker-directed vertex desymmetrization

Matzger (2010)

- Symmetry reduction of the linker $(D_{3h} \rightarrow C_{2v})$.
- Trinodal, edge-two transitive net.
- Trigonal prisms are geometric perquisites of cross-linked kgm.
- BET area: 3,000 m³/g.

Matzger et al., J. Am. Chem. Soc. 2010, 132, 13941-13948.

Eight points of extension

Long (2006)

- Anionic framework
- Isostructural to Mn-BTT.
- BET area: 2,100 m³/g.
- High H₂-uptake: 2.42 wt%
- $Q_{st} = 6 \text{ kJ/mol}$

Long et al., Angew. Chem. Int. Ed. 2007, 46, 1419-1422; J. Am. Chem. Soc. 2006, 128, 16876-16883.

Eight points of extension

- Anionic framework
- BTT³⁻ replaced by BTC³⁻
- BET area: 800 m³/g.
- Pore partitioning effect
- Described as **sod**, but **the** more accurate.

Zhang et al., Chem. Commun. 2011, 47, 10647-10649.

Nine points of extension – POST-1

K. Kim (2000)

- Only net reported with Zn-trigonal prism
- Chiral linker affords chiral framework (**always**)
- First asymmetric induction in MOF catalysis.

K. Kim et al., Nature 2000, 404, 982.

Twelve points of extension – composite SBUs

- tetrahedral SiO₄⁴⁻ core.
- double cross-linking, overall 6-c
 pcu net
- 2-fold interpenetration
- High stability up to 520°C

Zheng et al., Chem. Mater. 2002, 14, 3229-3231.

Twelve points of extension – bio-MOF-100

Rosi (2012)

- Triple cross-linking, overall 4c **lcs** net.
- only mesopores.
- BET area: 4,300 m²/g.
- Pore volume: 4.3 cm³/g.
- Post-synthetic linker exchange possible

Rosi et al., Nat. Commun. 2012, 3, 604; Linker exchange: Rosi et al., J. Am. Chem. Soc. 2013, 135, 11688-11691.

Topology of dia, lon and lcs

dia: <u>http://rcsr.net/nets/dia</u>; lon: <u>http://rcsr.net/nets/lon</u>; lcs: <u>http://rcsr.net/nets/lcs</u>.

Yaghi (2001)

- Metal-organic polyhedra
- 15Å inner diameter
- 12-c cuboctahedron

rhombicuboctahedron

Yaghi et al., J. Am. Chem. Soc. 2001, 123, 4368-4369; Zaworotko et al., Chem. Commun. 2001, 863-864; Yaghi et al., J. Am. Chem. Soc. **2008**, *130*, 11650-11661; Zhou *et al.*, *Nat Chem* **2010**, *2*, 893-898.

Decoration of MOPs – cuboctahedron

- Linking through exoposition of paddlewheels
- Mesoporous, octahedral cage

Wang et al., Chem. Commun. 2011, 47, 7128-7130; Yaghi et al., J. Am. Chem. Soc. 2008, 130, 11650-11661.

Rhombicuboctahedron – quadruple cross-linking

Zaworotko et al., J. Am. Chem. Soc. 2007, 129, 10076-10077.

Zaworotko (2007)

- Flexible, tetratopic linker.
- Quadruple cross-linking
- Each MOP connected to six neighbors.
- Overall **pcu**-net (each **rco** is 6-c).
- 2-fold interpenetration.

rht – The only possible 3,24-c net

Eddaoudi (2008)

- Minimal transitive net (rco and triangle with one kind of edge)
- BET area: 2,847 m²/g
- highly modular
- Fine tunable: sorption of H₂, CO₂, CH₄, ...

Eddaoudi et al., J. Am. Chem. Soc. 2008, 130, 1833-1835.

rht – A highly modular MOF

Eddaoudi (2011) Farha (2012)

- Isoreticular expansion
- Interpenetration precluded (rht not self dual)
- NU-110
 - BET area: 7,140 m²/g
 - Pore volume: 4.40 cm³/g

Eddaoudi et al., J. Am. Chem. Soc. 2011, 133, 17532-17535; Farha et al., J. Am. Chem. Soc. 2012, 134, 15016-15021.

Infinite SBUs – MOF-74

Yaghi (2005)

- Rod-like SBUs.
- Interpenetration precluded.
- 10.3 x 5.5 Å channels.
- Described as 5-c (bnn) or 3-c (etb) net.
- Highly modular.

Yaghi et al., J. Am. Chem. Soc. 2005, 127, 1504-1518; Isoreticular expansion: Yaghi et al., Science 2012, 336, 1018-1023.

Infinite SBUs – bio-MOF-1

Rosi et al., J. Am. Chem. Soc. 2009, 131, 8376-8377; J. Am. Chem. Soc. 2010, 132, 5578-5579.

Overview – important SBUs and related MOFs

Points of extension	SBU	Compound name	Topology (RCSR)	REFCODE (CSD)
3	Cu(-PY) ₃		ths	ZIBRAD
	$Zn_2(-COO)_3(NO_3)$	PNMOF-3	hcb	ICITOE
	[Cu ₃ O(-PZ) ₃ Cl ₃]+		srs	WELTIR
	Zn ₂ (-COO) ₃ (-COO) ₂	MOAAF	3,3,4,5-c	PEJNUP
4	Zn ₂ (-COO) ₄	MOF-2	sql	GECXUH
	Cu ₂ (-COO) ₄	HKUST-1	tbo	FIQCEN
	Cu ₂ (-COO) ₄	PCN-6'	tbo	NIBHOW
	Cu ₂ (-COO) ₄	MOF-399	tbo	BAZGAM
	Cu ₂ (-COO) ₄	MOF-11	pts	BIMDIL
	Cu ₂ (-COO) ₄	MOF-101	nbo	YIXBIQ
	Cu ₂ (-COO) ₄	MOF-505	nbo, fof	LASYOU
	Cu ₂ (-COO) ₄	kagomé	kgm	PACFOP
	Cu ₂ (-COO) ₄	MOP-1	cuo, rco	MIQCEU
	Cu ₂ (-COO) ₄	MOP-15	cuo, rco	KOJXAJ
6	Zn ₄ O(-COO) ₆	MOF-5	pcu	SAHYIK
	Zn ₄ O(-COO) ₆	MOF-177	qom	ERIRIG
	$Zn_4O(-COO)_6$	MOF-180	qom	CUSXIY
	$Zn_4O(-COO)_6$	MOF-200	qom	CUSXOE
	Zn ₄ O(-COO) ₆	MOF-210	toz	CUSYAR
	Zn ₃ (-COO) ₆	MOF-3	рси	PURSOK
	$Zn_4O(-PZ)_4(-COO)_2$		рси	WIYFAM
	Cu ₃ (-COO) ₆	UMCM-150	agw	UKIQOV

oints of xtension	SBU	Compound name	Topology (RCSR)	REFCODE (CSD)
3	Cu ₄ Cl(-PZ) ₈	Cu-BTT	the, sod	VEXYON
	Cu ₄ Cl(-COO) ₈		the, sod	ABEMIF
)	[Zn ₃ O(-COO) ₆ (-PY) ₃] ²⁻	POST-1	hcb	UHOPUC
2	Zn ₈ (SiO ₄)(-COO) ₁₂		рси	OGIYEI
	Cu ₂₄ (BDC) ₂₄ (-PY) ₁₂		fcu	IVEKEA
	[Zn ₈ O ₂ (AD) ₄ (-COO) ₁₂] ⁴⁻	bio-MOF-100	lcs	SAPBIW
24	Cu ₂₄ (-BDC) ₂₄		mjz, pcu	CILLAL
	Cu ₂₄ (-BDC) ₂₄	rht-MOF-1	rht <i>,</i> ntt	LIZWEX
	Cu ₂₄ (-BDC) ₂₄	rht-MOF-2	rht, ntt	ADASAB
	Cu ₂₄ (-BDC) ₂₄	NU-110	rht <i>,</i> ntt	SEMNIJ
×	[Zn ₂ (-O) ₂ (-COO) ₂] _∞	MOF-74	bnn, etb	FIJDOS
	{[Zn ₈ O(AD) ₄ (-COO) ₁₂] ²⁻ } _∞	bio-MOF-1	рси	NUDLAA