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ABSTRACT: We use prompt engineering to guide ChatGPT in the
automation of text mining of metal−organic framework (MOF)
synthesis conditions from diverse formats and styles of the scientific
literature. This effectively mitigates ChatGPT’s tendency to hallucinate
information, an issue that previously made the use of large language
models (LLMs) in scientific fields challenging. Our approach involves
the development of a workflow implementing three different processes
for text mining, programmed by ChatGPT itself. All of them enable
parsing, searching, filtering, classification, summarization, and data
unification with different trade-offs among labor, speed, and accuracy.
We deploy this system to extract 26 257 distinct synthesis parameters
pertaining to approximately 800 MOFs sourced from peer-reviewed
research articles. This process incorporates our ChemPrompt
Engineering strategy to instruct ChatGPT in text mining, resulting in impressive precision, recall, and F1 scores of 90−99%.
Furthermore, with the data set built by text mining, we constructed a machine-learning model with over 87% accuracy in predicting
MOF experimental crystallization outcomes and preliminarily identifying important factors in MOF crystallization. We also
developed a reliable data-grounded MOF chatbot to answer questions about chemical reactions and synthesis procedures. Given that
the process of using ChatGPT reliably mines and tabulates diverse MOF synthesis information in a unified format while using only
narrative language requiring no coding expertise, we anticipate that our ChatGPT Chemistry Assistant will be very useful across
various other chemistry subdisciplines.

■ INTRODUCTION
The dream of chemists is to create matter in the hope of
advancing human knowledge for the betterment of society.1,2 As
we stand on the precipice of the age of artificial general
intelligence (AGI), the potential for synergy between AI and
chemistry is vast and promising.3,4 The idea of creating AI-
powered chemistry assistants offers unprecedented opportuni-
ties to revolutionize the landscape of chemistry research by
applying knowledge across various disciplines, efficiently
processing labor-intensive and time-consuming tasks such as
literature searches, compound screening, and data analysis. AI-
powered chemistry may ultimately transcend the limits of
human cognition.5−8

Identifying chemical information for compounds, including
ideal synthesis conditions and physical and chemical properties,
has been a critical endeavor in chemistry research. The
comprehensive summary of chemical information from
literature reports, such as publications and patents, and their
subsequent storage in an organized database format is the next
logical and necessary step toward the discovery of materials.9

The challenge lies in efficiently mining the vast amount of
available literature to obtain valuable information and insights.
Traditionally, specialized natural language processing (NLP)
models have been employed to address this issue.10−14

However, these approaches can be labor-intensive and
necessitate expertise in coding, computer science, and data
science. Furthermore, they are less generalizable, requiring the
program to be rewritten when the target changes. The advent of
large language models (LLMs), such as GPT-3, GPT-3.5, and
GPT-4, has the potential to fundamentally transform this
process and revolutionize the routine of chemistry research in
the next decade.9,15−18

Herein, we demonstrate that LLMs, including ChatGPT
based on the GPT-3.5 and GPT-4 models, can act as chemistry
assistants to collaborate with human researchers, facilitating text
mining and data analysis to accelerate the research process. To
harness the power of what we termed the ChatGPT Chemistry
Assistant (CCA), we provide a comprehensive guide on
ChatGPT prompt engineering for chemistry-related tasks,
making it accessible to researchers regardless of their familiarity
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with machine learning, thus bridging the gap between chemists
and computer scientists. In this report, we present (1) a novel
approach to using ChatGPT for text mining the synthesis
conditions of metal−organic frameworks (MOFs), which can be
easily generalizable to other contexts requiring minimal coding
knowledge and operating primarily on verbal instructions; (2)
an assessment of ChatGPT’s intelligence in literature text
mining through accuracy evaluation and its ability for data
refinement; and (3) utilization of the chemical synthesis
reaction data set obtained from text mining to train a model
capable of predicting reaction results as crystalline powder or
single crystals. Furthermore, we demonstrate that the CCA
chatbot can be tuned to specialize in answering questions related
to MOF synthesis based on literature conditions, with minimal
hallucinations. This study underscores the transformative
potential of ChatGPT and other LLMs in the realm of chemistry
research, offering new avenues for collaboration and accelerating
scientific discovery.

■ MATERIALS AND METHODS
Design Considerations for ChatGPT-Based Text Mining. In

curating research papers for ChatGPT to read and extract information,
it is imperative to account for the diversity in MOF synthesis
conditions, such as variations in metal sources, linkers, solvents, and
equipment as well as the different writing styles employed. Notably, the
absence of a standardized format for reporting MOF synthesis
conditions leads to variable reporting templates by research groups
and journals. Indeed, by incorporating a broad spectrum of narrative
styles, we can examine ChatGPT’s robustness in processing
information from heterogeneous sources. On the other hand, it is
essential to recognize that the challenge of establishing unambiguous
criteria to identify MOF compounds in the literature may lead to the

inadvertent inclusion of some non-MOF compounds reported in earlier
publications that are nonporous inorganic complexes and amorphous
coordination polymers (included in some MOF data sets). As such,
maintaining a balance between quality and quantity is vital, and
prioritizing the selection of high-quality and well-cited papers, rather
than incorporating all associated papers indiscriminately, can ensure
that the text mining of MOF synthesis conditions yields reliable and
accurate data.

Moreover, papers discussing postsynthetic modifications, catalytic
reactions of MOFs, and MOF composites are not directly pertinent to
our objective of identifying MOF synthesis conditions. Hence, such
papers have been excluded. Another consideration is that MOFs can be
synthesized as both microcrystalline powders and single crystals, both
of which should be regarded as valid candidates for our data set.
Utilizing the above-mentioned selection criteria, we narrowed our
selection to 228 papers from an extensive pool of MOF papers,
retrieved from the Web of Science, the Cambridge Structure Database
MOF subset,19 and the CoreMOF database.20,21 This sample
represents a diverse range of MOF synthesis conditions and narrative
styles.

To enable ChatGPT to process each paper, we devised three
different approaches analogous to human paper reading: (1) locating
potential sections containing synthesis conditions within the document,
(2) confirming the presence of synthesis conditions in the identified
sections, and (3) extracting synthesis parameters one by one. For our
ChatGPT Chemistry Assistant, these steps are accomplished through
filtering, classification, and summarization (Figure 1).

In Process 1, we developed prompts to guide ChatGPT in
summarizing text from designated experimental sections contained in
those papers. To replace the need for human intervention to obtain
synthesis sections, in Process 2, we designed a method for ChatGPT to
categorize text inputs as either “experimental section” or “nonexper-
imental section”, enabling it to generate experimental sections for
summarization. In Process 3, we further devised a technique to swiftly
eliminate irrelevant paper sections, such as references, titles, and

Figure 1. Schematics of the ChatGPT Chemistry Assistant workflow having three different processes employing ChatGPT and ChemPrompt for
efficient text mining and summarization of MOF synthesis conditions from a diverse set of published research articles. Each process is distinctively
labeled with red, blue, and green dots. To illustrate, Process 1 is initiated with “Published Research Articles”, proceeds to “Human Preselection”, moves
to the “Synthesis Paragraph”, integrates “ChatGPT with Chem-Prompt”, and culminates in “Tabulated Data”. Steps shared among multiple processes
are indicated with corresponding color-coded dots. The two-snakes logo of Python is included to indicate the use of the Python programming
language, with the logo’s credit attributed to the Python Software Foundation (PSF). The white or black OpenAI logo is embedded to symbolize that
the process is powered by OpenAI models, with the logo’s credit acknowledged as belonging to OpenAI.
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acknowledgments, which are unlikely to encompass comprehensive
synthesis conditions. This accelerates the processing speed for the later
classification task. As such, in Process 1, ChatGPT is solely responsible
for summarizing and tabulating synthesis conditions and requires one
or more paragraphs of experimental text as input, while Processes 2 and
3 can be considered to be an “automated paper reading system”. While
Process 2 entails a thorough examination of the entire paper to
scrutinize each section, the more efficient Process 3 rapidly scans the
entire paper, removing the least relevant portions and thereby reducing
the number of paragraphs that ChatGPT must meticulously analyze.
Prompt Engineering. In the realm of chemistry-related tasks,

ChatGPT’s performance can be significantly enhanced by employing
prompt engineering (PE)�a meticulous approach to designing
prompts that steer ChatGPT toward generating precise and pertinent
information. We propose three fundamental principles in prompt
engineering for chemistry-focused applications, denoted as Chem-
Prompt Engineering:

(1) Minimizing Hallucination, which entails the formulation of
prompts to avoid eliciting fabricated or misleading content from
ChatGPT. This is particularly important in the field of
chemistry, where the accuracy of information can have
significant implications on research outcomes and safety. For
instance, when asked to provide synthesis conditions for MOFs
without any additional prompt or context, ChatGPT may
recognize that MOF-99999 does not exist but will generate
fabricated conditions for existing compounds with names such
as MOF-41, MOF-419, and MOF-519. We should note that
with additional prompts followed after the question, it is possible
to minimize hallucination and force ChatGPT to answer the
questions based on its knowledge (Tables 1 and 2).

Furthermore, we demonstrate that with well-designed prompts
and context, hallucination occurrences can be minimized
(Supporting Information, Section S2.1). We note that this
should be the first and foremost principle to follow when
designing prompts for ChatGPT to perform in handling text and
questions relevant to chemical information.

(2) Implementing Detailed Instructions, whereby explicit directions
are provided in the prompt to assist ChatGPT in understanding
the context and desired response format. By incorporating
detailed guidance and context into the prompts, we can facilitate
a more focused and accurate response from ChatGPT. In
chemistry-related tasks, this approach narrows down the
potential answer space and reduces the likelihood of irrelevant
or ambiguous responses. For example, we can specify not to
include any organic linker synthesis conditions and focus solely
on MOF synthesis (Supporting Information, Figure S8). In this
case, we found that ChatGPT can recognize the features of
organic linker synthesis and differentiate them from MOF
synthesis. With proper prompts, information from organic linker
synthesis will not be included. Additionally, instructions can

provide step-by-step guidance, which has proven effective when
multiple tasks are included in one prompt (Supporting
Information, Section S2.2).

(3) Requesting Structured Output, which includes the incorporation
of an organized and well-defined response template or
instructions to facilitate data extraction. We emphasize that
this principle is particularly valuable in the context of chemistry,
where data can often be complex and multifaceted. Structured
output enables the efficient extraction and interpretation of
critical information, which in turn can significantly contribute to
the advancement of research and knowledge in the field. Taking
synthesis condition extraction as an example, without clear
instructions on the formatted output, ChatGPT can generate a
table, list-like bullet points, or a paragraph, with the order of
parameters such as the reaction temperature, reaction time, and
solvent volume not being uniform, making it challenging for
later sorting and storage of the data. This can be easily improved
by explicitly asking it to generate a table and providing a fixed
header to start with a prompt (Supporting Information, Section
S2.3). By incorporating these principles, the resulting prompt
can ensure that ChatGPT yields accurate and reliable results,
ultimately enhancing its utility in tackling complex chemistry-
related tasks (Figure 2). We further employ the idea of
interactive prompt refinement, in which we start by asking
ChatGPT to write a prompt to instruct itself by giving it
preliminary descriptions and information (Supporting Informa-
tion, Figure S15). Through conversation, we add more specific
details and considerations to the prompt, testing it with some
texts, and once we obtain output, we provide feedback to
ChatGPT and ask it to improve the quality of the prompt
(Supporting Information, Section S2.4).

As there has been almost no literature systematically discussing
prompt engineering in chemistry and the fact that this field is relatively
new, we provide a comprehensive step-by-step ChemPrompt Engineer-
ing guide for beginners to start with, including numerous chemistry-
related examples in the Supporting Information, Section S2. At present,
everyone is at the same starting point, and no one possesses exclusive
expertise in this area. It is our hope that this work will stimulate the
development of more powerful prompt engineering skills and help
every chemist quickly understand the art of ChemPrompt Engineering,
thereby advancing the field of chemistry at large.
Process 1: Synthesis Conditions Summarization. One revolu-

tionary aspect of ChatGPT is its specialized domain knowledge due to
its extensive pretrained text corpus, which enables an understanding of
chemical nomenclature and reaction conditions.18 In contrast to
traditional NLP methods, ChatGPT requires no additional training for
named entity recognition and can readily identify inorganic metal
sources, organic linkers, solvents, and other compounds within a given

Table 1. Assessment of Hallucination in the ChatGPT
Response without Prompt Engineering

Query ChatGPT Responsea

Which metal is used in the synthesis of MOF-5? Zinc (Correct)
Whichmetal is used in the synthesis ofMOF-519? Zirconium (Incorrect)
What is the linker used in the synthesis of
MOF-99999?

I do not know (Correct)

What is the linker used in the synthesis of
MOF-419?

Terephthalic acid
(Incorrect)

What is the linker used in the synthesis of ZIF-8? 2-Methylimidazole
(Correct)

aResponses are representative answers selected from a series of 100
repeated queries, followed by parenthetical indications of their
correctness, which is based on the established facts concerning the
respective compounds referenced in the queries.

Table 2. Improvements in ChatGPT Response Accuracy
Utilizing a Basic Prompt Engineering Strategy

Initial Query Guided Prompt ChatGPT
Responsea

Which metal is used in the
synthesis of MOF-5?

If you are uncertain, please
reply with “I do not

know”.

Zinc (Correct)

Which metal is used in the
synthesis of MOF-519?

I do not know
(Correct)

What is the linker used in
the synthesis of
MOF-99999?

I do not know
(Correct)

What is the linker used in
the synthesis of
MOF-419?

I do not know
(Correct)

What is the linker used in
the synthesis of ZIF-8?

2-Methylimidazole
(Correct)

aResponses are representative answers selected from a series of 100
repeated queries, followed by parenthetical indications of their
correctness, which is based on the established facts concerning the
respective compounds referenced in the queries.
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experimental text. Another notable feature is ChatGPT’s ability to
recognize and associate compound abbreviations (e.g., DMF) with
their full names (N,N-dimethylformamide) within the context of MOF
synthesis (Supporting Information, Figure S5). This capability is crucial
as the use of different abbreviations for the same compound can inflate
the number of “unique compounds” in the data set after text mining,
leading to redundancy without providing new information. This
challenge is difficult to address using traditional NLP methods or
packages as no model can inherently discern that DMF and N,N-
dimethylformamide are the same compound without a manually
curated dictionary of chemical abbreviations. Although ChatGPT may
not cover all abbreviations, its proficiency in identifying and associating
the most common ones, such as DEF, DI water, EtOH, and CH3CN
with their full names, enhances data consistency and reduces
redundancy. This, in turn, facilitates data retrieval and analysis,
ensuring that different names of the same compound are treated as a
single entity with its unique chemical identity and information.

Our first goal is to develop a ChatGPT-based AI assistant that
demonstrates high performance in converting a given experimental
section paragraph into a table containing all synthesis parameters
(Supporting Information, Figure S22). To design the prompt for this
purpose, we incorporate the three principles discussed earlier into
ChemPrompt Engineering (Figure 2). The rationale for using
tabulation as the output for synthesis condition summarization is that
the tabular format simplifies subsequent data sorting, analysis, and
storage. In terms of the choice of 11 synthesis parameters, we include
those deemed most important and non-negligible for each MOF
synthesis. Specifically, these parameters encompass metal sources and
quantities, dictating metal centers in the framework and their relative
concentrations; the linker and its quantity, which affect connectivity
and pore size within the MOF; the modulator and its quantity or
volume, which can fine-tune the MOF’s structure by impacting the
nucleation and growth of the MOF in the reaction; the solvent and its
volume, which can influence both the crystallization process and the
final MOF structure; and the reaction temperature and duration, which
are vital parameters governing the kinetics and thermodynamics of
MOF formation in each synthesis. In our prompt, we also account for

the fact that some papers may report multiple synthesis conditions for
the same compound and instruct ChatGPT to use multiple rows to
include each variation. For multiple units of the same synthesis
parameters, such as when molarity mass and weight mass are both
reported, we encourage ChatGPT to include them in the same cell,
separated by a comma, which can be later streamlined depending on the
need. If any information is not provided in the sections, e.g., most MOF
reactions may not involve the use of modulators and some papers may
not specify the reaction time, then we expect ChatGPT to answer “N/
A” for that parameter. Importantly, to eliminate non-MOF synthesis
conditions such as organic linker synthesis, postsynthetic modification,
and catalysis reactions, which are not helpful for studying MOF
synthesis reactions, we simply add one line of narrative instruction,
asking ChatGPT to ignore these types of reactions and focus solely on
MOF synthesis parameters. Notably, this natural language-based
instruction is highly convenient, requiring no complex and laborious
rule-based code to identify unwanted cases and filter them out, and is
friendly to researchers without coding experience.

The finalized prompts for Process 1 consist of three parts: (i) a
request for ChatGPT to summarize and tabulate the reaction
conditions and use only the text or information provided by humans,
which adheres to Principle 1 to minimize hallucination; (ii) a
specification of the output table’s structure, enumerating expectations
and handling instructions, which follows Principles 2 and 3 for detailed
instructions and structured output requests; and (iii) the context,
consisting of MOF synthesis reaction condition paragraphs from
experimental sections or the Supporting Information in research
articles. Note that parts (i) and (ii) are fixed prompts, while part (iii) is
considered to be “input”. The combined prompt results in a single
question-and-answer interaction, allowing ChatGPT to generate a
summarization of the given synthesis conditions as output.
Process 2: Synthesis Paragraph Classification. The next

question to be answered is, “if ChatGPT is given an entire research
article, can it correctly locate the experimental sections?” The objective
of Process 2 is to accept an entire research paper as input and selectively
forward paragraphs containing chemical experiment details to the next
assistant for summarization. However, locating the experimental

Figure 2. Illustration of a carefully designed ChemPrompt (shown on the left) encapsulating all three fundamental principles of ChemPrompt
Engineering (shown on the right). The prompt guides ChatGPT to systematically extract and summarize synthesis conditions from a specified section
in a research article, organizing the data into a well-structured table.
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synthesis section within a research paper is a complex task, as simple
techniques, such as keyword searches, often prove insufficient. For
instance, the synthesis of MOFs may be embedded within the
Supporting Information or combined with organic linker synthesis. In
earlier publications, the synthesis information might appear as a
footnote. Furthermore, different journals or research groups utilize
varying section titles, including “Experimental”, “Methods”, “General
Methods and Materials”, “Experimental Methods”, “Synthesis and
Characterization”, “Synthetic Procedures”, “Methods Summary”, and
more. Manually enumerating each case is labor-intensive, especially
when synthesis paragraphs may be dispersed with non-MOF synthesis
conditions or instrument details. Even a humanmight take considerable
time to identify the correct section.

To address this challenge and enable ChatGPT to accurately discern
synthesis details within a lengthy research paper, we draw inspiration
from the human process. A chemistry Ph.D. student, when asked to
locate the MOF synthesis section in a new research paper, would
typically start with the first paragraph and ask themselves if it contains
synthesis parameters. They would then draw upon prior knowledge
from previously read papers to determine whether the section is
experimental. This process is repeated paragraph by paragraph until the
end of the Supporting Information is reached, with no guarantee that
additional synthesis details will not be encountered later. To train
ChatGPT similarly, we prompt it to read paper sections incrementally,
focusing on one or two paragraphs at a time. Using a few-shot prompt
strategy, we provided ChatGPT with a couple of example cases of both
synthesis and nonsynthesis paragraphs and asked it to classify the
sections it read as either “Yes” (synthesis paragraph) or “No”
(nonsynthesis paragraph). The ChatGPT Chemistry Assistant would
then continue processing the research paper section by section, passing
only the paragraphs labeled as “Yes” to the following assistant for
summarization.

This few-shot prompt strategy is more convenient than traditional
approaches, which require researchers to manually identify and label a
large number of paragraphs as “Synthesis Paragraphs” and train their
models accordingly. In fact, ChatGPT can even perform such
classification using a zero-shot prompt strategy with detailed
descriptions of what a “Synthesis Paragraph” should look like and
contain. However, we have found that providing four or five short
examples in a few-shot prompt strategy enables ChatGPT to identify
the features of synthesis paragraphs more effectively, streamlining the
classification process (Supporting Information, Figure S24).

The finalized prompt for Process 2 comprises three parts: (i) a
request for ChatGPT to determine whether the provided context
includes a comprehensiveMOF synthesis, answering only with “Yes” or
“No”; (ii) some example contexts labeled as “Yes” and others labeled as
“No”; and (iii) the context to be classified, consisting of one or more
research article paragraphs. Similar to Process 1’s prompt, parts (i) and
(ii) are fixed, while part (iii) is replaced with independent sections from
the paper to be classified. The entire research article is parsed into
sections of 100−500 words, which are iteratively incorporated into the
prompt and sent separately to ChatGPT for a “Yes” or “No” response.
Each prompt represents a one-time conversation, and ChatGPT cannot
view answers from previous prompts, preventing potential bias in its
decision making for the current prompt.
Process 3: Text Embeddings for Search and Filtering. Text

embeddings are high-dimensional vector representations of text that
capture semantic information, enabling quantification of the related-
ness of textual content.22,23 The distance between these vectors in the
embedded space correlates with the semantic similarity between
corresponding text strings, with smaller distances indicating greater
relatedness.24,25 While Process 2 can automatically read and summarize
papers, it must evaluate every section to identify synthesis paragraphs.
To expedite this process, we developed Process 3, which filters sections
least likely to contain synthesis parameters using OpenAI embeddings
before exposing the article to the classification assistant in Process 2. To
achieve this, we employed a two-step approach to construct Process 3:
first, parsing all papers and converting each segment into embeddings
and second, calculating and ranking the similarity scores of each

segment based on their relevance to a predefined prompt encapsulating
the synthesis parameter.

In particular, we partitioned the 228 research articles into 18 248
individual text segments (Supporting Information, Figures S30−S32).
Each segment was converted into 1536-dimensional text embedding
usingOpenAI’s text-embedding-ada-002, a simple but efficient model for
this process (Supporting Information, Figures S33−S35). These
vectors were stored for future use. To identify segments most likely
to contain synthesis parameters, we employed an interactive prompt
refinement strategy (Supporting Information, Section S2.4), consulting
with ChatGPT to optimize the prompt. The prompt used in Process 3,
unlike previous prompts, served as a text segment for search and
similarity comparison rather than instructing ChatGPT (Supporting
Information, Figure S25). Next, the embeddings of all 18 248 text
segments were compared with the prompt’s embedding, and a
relevance score was assigned to each segment based on the cosine
similarity between the two embeddings. Highly relevant segments were
passed on to a classification assistant for further processing, while low-
similarity segments were filtered out (Figure 1).

To evaluate the effectiveness of this approach, we conducted a visual
exploration of our embedding data (Figure 3). By reducing the vectors’

dimensionality, we observed distinct clusters corresponding to different
topics. Notably, we identified distinct clusters related to topics such as
gas sorption, literature references, characterization, structural analysis,
and crystallographic data, which were separate from the synthesis
cluster. This observation strongly supports the efficiency of our
embedding-based filtering strategy. However, this strategy, while
effective at filtering out less relevant text and passing segments of
mid- to high relevance to the subsequent classification assistant, cannot
directly search for synthesis paragraphs to feed to the summarization
assistant, thus bypassing the classification assistant. In other words, the
searching-to-classifying-to-summarizing pipeline cannot be simplified
to a searching-to-summarizing pathway due to the inherent search
limitations of the embeddings. As shown in Figure 3, embeddings alone
may not accurately identify all relevant synthesis sections, particularly
when they contain additional information, such as characterization and

Figure 3. Two-dimensional visualization of 18 248 text segment
embeddings, with each point representing a text segment from the
research articles selected. Color coding denotes thematic categories:
red for synthesis, green for gas sorption, yellow for literature reference,
blue for crystallographic data, purple for structural analysis, orange for
characterization, and gray for other text segments not emphasized in
this study.
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sorption data. The presence of these elements in a synthesis section can
reduce its similarity score and its proximity to the center of the synthesis
cluster. Points between the synthesis and characterization or crystallo-
graphic data clusters may not have the highest similarity scores and
could be missed. However, by filtering only the lowest scores,
midrelevance points are retained and passed to the classification
assistant, which can more accurately classify ambiguous content.
ChatGPT-Assisted Python Code Generation and Data

Processing. Rather than relying on singular, time-consuming
conversations with web-based ChatGPT to process textual data from
a multitude of research articles, OpenAI’s GPT-3.5-turbo, which is
identical to the one underpinning the ChatGPT product, facilitates a
more efficient approach, as it incorporates an application programming
interface (API), enabling batch processing of text from an extensive
array of articles. This is achieved through iterative context and prompt
submissions to ChatGPT, followed by the collection of its responses
(Supporting Information, Section S3.4).

Specifically, our approach involves having ChatGPT create Python
scripts for parsing academic papers, generating prompts, executing text
processing through Processes 1, 2, and 3, and collating the responses
into cleaned, tabulated data (Supporting Information, Figures S28−
S39). Traditionally, such a process could necessitate substantial coding
experience and could be time-consuming. However, we leverage the
code generation capabilities of ChatGPT to establish Processes 1, 2,
and 3 for batch processing using OpenAI’s APIs, namely, gpt-3.5-turbo
and text-embedding-ada-002. In essence, researchers only need to
express their requirements for each model in natural language,
specifying inputs and desired outputs, and ChatGPT will generate
the appropriate Python code (Supporting Information, Section S3.5).
This code can be copied, pasted, and executed in the relevant
environment. Notably, even in the event of an error, ChatGPT,
especially when equipped with the GPT-4 model, can assist in code

revision. We note that while coding assistance from ChatGPT may not
be necessary for those with coding experience, it does provide an
accessible platform for individuals lacking such experience to engage in
the process. Given the simplicity and straightforwardness of the logic
involved in Processes 1, 2, and 3, ChatGPT-generated Python code
exhibits minimal errors and significantly accelerates the programming
process.

ChatGPT also aids in entity resolution after text mining (Figure 4).
This step involves standardizing data formats including units, notation,
and compound representations. For each task, we designed a specific
prompt for ChatGPT to handle data directly or a specialized Python
code generated by ChatGPT. More details on designing prompts to
handle different synthesis parameters are available in a cookbook style
in the Supporting Information, Section S4. In simpler cases, ChatGPT
can directly handle conversions such as time and reaction temperature.
For complex calculations, we take advantage of ChatGPT in generating
Python code. For instance, to calculate the molar mass of each metal
source, ChatGPT can generate the appropriate Python code based on
the given compound formulas. For harmonizing the notation of
compound pairs or mixtures, ChatGPT can standardize different
notations to a unified format, facilitating subsequent data processing.

To standardize compound representations, we employed the
simplified molecular input line-entry system (SMILES). We faced
challenges with some synthesis procedures, where only abbreviations
were provided. To overcome this, we designed prompts for ChatGPT
to search for the full names of the given abbreviations. We then created
a dictionary linking each unique PubChem Compound identification
number (CID) or Chemical Abstracts Service (CAS) number to
multiple full names and abbreviations and generated the corresponding
SMILES code. We note that for complicated linkers or those with
missing full names, inappropriate nomenclature, or nonexistent CID or
CAS numbers,26−33 manual intervention was occasionally necessary to

Figure 4. Schematic representation of the diverse data unification tasks managed either directly by ChatGPT or through Python code written by
ChatGPT. The figure distinguishes between simpler tasks handled directly by ChatGPT, such as standardizing chemical notation and converting time
and temperature units in reactions. More complex tasks, such as matching linker abbreviations to their full names, converting these to SMILES codes,
classifying product morphology, and calculating metal amounts, are accomplished via Python code generated by ChatGPT. The Python logo displayed
is credited to the Python Software Foundation, while the OpenAI logo is credited to OpenAI.
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generate SMILES codes for such chemicals (Supporting Information,
Figures S50−S54). However, most straightforward cases were handled
efficiently by ChatGPT’s generated Python code. As a result, we
achieved uniformly formatted data, ready for subsequent evaluation and
utilization.

■ RESULTS AND DISCUSSION
Evaluation of Text Mining Performance. We began our

performance analysis by first evaluating the execution time
consumption for each process (Figure 5a). As previously
outlined, the ChatGPT assistant in Process 1 exclusively accepts
preselected experimental sections for summarization. Con-
sequently, Process 1 requires human intervention for the
identification and extraction of the synthesis section from a
paper to operate autonomously. As illustrated in Figure 5a, this
process can vary in duration based on the length and structure of
the document and its Supporting Information file. In our study,
the complete selection procedure spanned 12 h for 228 papers,
averaging around 2.5 min per paper. This period must be
considered to be the requisite time for Process 1’s execution. For

summarization tasks, ChatGPT Chemistry Assistant demon-
strated an impressive performance, taking an average of 13 s per
paper. This is noteworthy considering that certain papers in the
data set contained more than 20 MOF compounds, and human
summarization in the traditional way without AI might consume
a significantly larger duration. By accelerating the summarization
process, we alleviate the burden of repetitive work and free up
valuable time for researchers.

In contrast, Process 2 operates in a fully automated manner,
integrating the classification and result-passing processes to the
next assistant for summarization. There is no doubt that it
outperforms the manual identification and summarization
combination of Process 1 in terms of speed due to ChatGPT’s
superior text processing capabilities. Finally, Process 3, as
anticipated, is the fastest due to the incorporation of section
filtering powered by embedding, reducing the classification tasks
and subsequently enhancing the speed. The efficiency of Process
3 can be further optimized by storing the embeddings locally as a
CSV file during the first reading of a paper, which reduces the

Figure 5.Multifaceted performance analysis of ChatGPT-based text mining processes. (a) Comparison of the average execution time required by each
process to read and process a single paper, highlighting their relative efficiency. (b) Distribution of true positive counts for each of the 11 synthesis
parameters, derived from the cumulative results of Processes 1, 2, and 3 based on a total of 2387 synthesis conditions. Despite minor discrepancies, the
counts are closely aligned, demonstrating the assistants’ proficiency in effectively extracting the selected parameters. (c) Aggregate average precision,
recall, and F1 scores for each process, indicating their overall accuracy and reliability. Standard deviations are represented by gray error bars in the chart.
(d) Heat map illustrating the detailed percentage precision, recall, and F1 scores for each synthesis parameter across the three processes, providing a
nuanced understanding of the ChatGPT-based assistants’ performance in accurately identifying specific synthesis parameters.
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processing time by 15−20 s (28−37% faster) in subsequent
readings. This provides a convenient solution in scenarios
necessitating repeated readings for comparison or the extraction
of diverse information.

To evaluate the accuracy of the three processes in text mining,
instead of sampling, we conducted a comprehensive analysis of
the entire result data set. In particular, we manually wrote down
the ground truth for all 11 parameters for approximately 800
compounds reported in all papers across the three processes,
which was used to judge the text mining output. This involved
the grading of nearly 26 000 synthesis parameters by us. Each
synthesis parameter was assigned one of three labels: true
positive (TP, correct identification of synthesis parameters by
ChatGPT), false positive (FP, incorrect assignment of a
compound to the wrong synthesis parameter or extraction of
irrelevant information), or false negative (FN, failure of
ChatGPT to extract some synthesis parameters). Notably, a
special rule for assigning labels on modulators, most of which
were anticipated to be acid and base, was introduced to
accommodate the neutral solvents in a mixed-solvent system
due to the inherent challenges in distinguishing between
cosolvents and modulators. For instance, in a DMF:H2O =
10:1 solution, the role of H2O becomes ambiguous. In such
situations, we labeled the result as a TP if H2Owas considered to
be either a solvent or modulator. However, we labeled it as FP or
FN if it appeared or was absent in both solvent and modulator
columns. Nevertheless, acids and bases were still classified as
modulators, and if labeled as solvents, they were graded as FP.

The distribution of TP labels counted for each of the 11
synthesis parameters across all papers is presented in Figure 5b.
It should be noted that not all MOF synthesis conditions
necessitate the reporting of all 11 parameters; for instance, some
syntheses do not involve modulators, and in such cases, we asked
ChatGPT to assign an N/A to the corresponding column and its
amount. Subsequently, we computed the precision, recall, and
F1 scores for each parameter across all three processes, as
illustrated in Figure 5c and d. All processes demonstrated
commendable performance in identifying compound names,
metal source names, linker names, modulator names, and
solvent names. However, they encountered difficulties in
accurately determining the quantities or volumes of the
chemicals involved. Meanwhile, parameters such as the reaction
temperature and reaction time, which usually have fixed patterns
(e.g., units such as °C and hours, respectively), were accurately
identified by all processes, resulting in high recall, precision, and
F1 scores. The lowest scores were associated with the recall of
solvent volumes. This is because ChatGPT often captured only
one volume in mixed solvent systems instead of multiple
volumes. Moreover, in some of the literature, the stock solution
was used to dissolve metals and linkers, and in principle these
volumes should be added to the total volume. Unfortunately,
ChatGPT lacked the ability to report the volume for each
portion in these cases.

Nevertheless, it should be noted that our instructions did not
intend for ChatGPT to perform arithmetic operations in these
cases, as the mathematical reasoning of the large language
models is limited, and the diminishment of the recall scores is
unavoidable. In other instances, only one exemplary synthesis
condition forMOFwas reported, and then for similarMOFs, the
paper would state only “following similar procedures”. In such
cases, while occasionally ChatGPT could duplicate conditions,
most of the time it recognized solvents, the reaction temper-

ature, and the reaction time as N/A, which was graded as a FN,
thus reducing the recall scores across all processes.

Despite these irregularities, which were primarily attributable
to informal synthesis reporting styles, the precision, recall, and
F1 scores for all three processes remained impressively high,
with less than 9.8% of NP and 0 cases of hallucination detected
by human evaluators. We further calculated the average and
standard deviation of each process on precision, recall, and F1
scores, as shown in Figure 5c. By considering and averaging
precision, recall, and F1 scores across the 11 parameters, given
their equal importance in evaluating the overall performance of
the process, we found that all three processes achieved
impressive precision (>95%), recall (>90%), and F1 scores
(>92%).

The performance metrics of Process 1 substantiated our
hypothesis that ChatGPT excels in summarization tasks. Upon
comparing the performance of Processes 2 and 3�both of
which are fully automated paper-reading systems capable of
generating data sets from PDFs with a single click�we observed
that Process 2, by meticulously examining every paragraph
across all papers, ensures high precision and recall by
circumventing the omission of any synthesis paragraphs or the
extraction of incorrect data from irrelevant sections. Conversely,
while Process 3’s accuracy is marginally lower than that of
Process 2, it provides a significant reduction in processing time,
thus enabling faster paper reading while maintaining acceptable
accuracy, courtesy of its useful filtration process.

To the best of our knowledge, these scores surpass most of
those of the other models in text mining in the MOF-related
domain.11,13,14,34,35 Notably, the entire workflow, established via
code and programs generated from ChatGPT, can be assembled
by one or two researchers with only basic coding proficiency in a
period of as brief as 1 week while maintaining remarkable
performance. The successful establishment of this innovative
ChatGPT Chemistry Assistant workflow, including the
ChemPrompt Engineering system, which harnesses AI for
processing chemistry-related tasks, promises to significantly
streamline scientific research. It liberates researchers from
routine laborious work, enabling them to concentrate on more
focused and innovative tasks. Consequently, we anticipate that
this approach will catalyze potentially revolutionary shifts in
research practices through the integration of AI-powered tools.
Prediction Modeling of MOF Synthesis Outcomes.

Given the large quantity of synthesis conditions obtained
through our ChatGPT-based text mining programs, our aim is to
utilize these data to investigate, comprehend, and predict the
crystallization conditions of a material of interest. Specifically,
our goal was to determine the crystalline state based on synthesis
conditions; we seek to discern which synthesis conditions will
yield MOFs in the form of single crystals and which conditions
are likely to yield nonsingle crystal forms of MOFs, such as
microcrystalline powder or solids.

With this objective in mind, we identified the need for a label
signifying the crystalline state of the resulting MOF for each
synthesis condition, thereby forming a target variable for
prediction. Fortunately, nearly all research papers in the MOF
field consistently include the description of crystal morpho-
logical characteristics such as the color and shape of as-
synthesized MOFs (e.g., yellow needle crystals, red solid, sky-
blue powdered product). This facilitated rerunning our
processes with the same synthesis paragraphs as input and
modifying the prompt to instruct ChatGPT to extract the
description of reaction products, summarizing and categorizing
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them (Supporting Information, Figures S23 and S47). The final
label for each condition will be either single-crystal (SC) or
polycrystalline (P), and our objective is to construct a machine
learning model capable of accurately predicting whether a given
condition will yield SC or P. Furthermore, we recognized that
the crystallization process is intrinsically linked to the synthesis
method (e.g., vapor diffusion, solvothermal, conventional, or
microwave-assisted). Thus, we incorporated an additional
synthesis variable, the “synthesis method”, to categorize each
synthesis condition into four distinct groups. Extracting the
reaction type variable for each synthesis condition can be
achieved using the same input but a different few-shot prompt to
guide our ChatGPT-based assistants for classification and
summarization, subsequently merging this data with the existing
data set. This process parallels the method for obtaining the
MOF crystalline state outcomes, and both processes can be
unified in a single prompt. Moreover, as the name of the MOF is
a user-defined term and does not influence the synthesis result,
we excluded this variable for the purposes of prediction
modeling.

After unifying and organizing the data to incorporate 11
synthesis parameter variables and 1 synthesis outcome target
variable, we designed respective descriptors for each synthesis
parameter capable of robustly representing the diversity and
complexity of the synthesis conditions and facilitating the
transformation of these variables into features suitable for
machine learning algorithms. A total of six sets of chemical
descriptors were formulated for the metal node(s), linker(s),
modulator(s), solvent(s), their respective molar ratios, and the
reaction condition(s), aligning with the extracted synthesis
parameters (Supporting Information, Section S5).36−40 These
MOF-tailored hierarchical descriptors have been previously
shown to perform well in various prediction tasks.13,41 To distill
themost pertinent features and streamline themodel, a recursive
feature elimination (REF) with 5-fold cross-validation was
performed on 80% of the total data. The rest was preserved as a
held-out set unseen during the learning process for independent
evaluation (Figure 6a). This down-selection process reduced the
number of descriptors from 70 to 33, thereby preserving
comparative model performance on the held-out set while
removing the noninformative features that can lead to overfitting
(Supporting Information, Section S5).

Subsequently, we constructed a machine learning model to
train for synthesis conditions to predict whether a given
synthesis condition can yield single crystals. A binary classifier
was trained based on a random forest model (Supporting
Information, Section S5). The random forest (RF) is an
ensemble of decision trees whose independent predictions are
max voted in the classification case to arrive at the more precise
prediction.42 In our study, we trained an RF classifier to predict
crystalline states from synthesis parameters, given its ability to
work with both continuous and categorical data, its advantage in
ranking important features toward prediction, its robustness
against noisy data,43 and its demonstrated efficacy in various
chemistry applications such as chemical property estima-
tion,44−47 spectroscopic analysis,48−51 and material character-
ization and discovery.52

The dimension-reduced data was randomly divided into
different training sizes; for each train test split, optimal
hyperparameters, in particular, the number of tree estimators
and minimum samples required for leaf split, were determined
with 5-fold cross validation of the training set. Model
performance was gauged in terms of class weighted accuracy,

precision, recall, and F1 score over 10 runs on the held-out set
and test set (Figure 6b and Supporting Information, Figure
S64). The model converged to an average accuracy of 87% and
an F1 score of 92% on the held-out set, indicating a reasonable

Figure 6. Performance of the classification models in predicting the
crystalline state of MOFs from synthesis. (a) Learning curves of the
classifier model with 1σ standard deviation error bars. (b) Model
performance evaluation through the F1 Score, Precision, Recall, and
Area Under the Curve metrics. The training set fraction was in ratio to
the data excluding the held-out set. (c) The 10 most significant
descriptors of the trained random forest model, determined by an
accuracy score increase. (d) Six examples of MOFs, MOF-520, MOF-
74, ZIF-8, Al-fum, CAU-32, and MOF-808 along with their synthesis
conditions derived from the literature.55−60 Circle positions on the bar
represent the likelihood of resulting in single-crystal or polycrystalline
states predicted by the model. The model’s predictions for these six
examples aligned with actual experimental results.
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performance in the presence of the imbalanced classification
challenge.

Following the creation of the predictive model, our objective
was to apply this model for descriptor analysis to illuminate the

factors impacting MOF crystalline outcomes. This aids in
discerning which features in the synthesis protocol are more
crucial in determining whether a synthesis condition will yield
MOF single crystals. Although the random forest model is not

Figure 7. Integrated workflow of the MOF chatbot transforming comprehensive synthesis data sets into contextually accurate dialogue systems and
demonstration of a conversation with the data-driven chatbot. The process ensures enhanced data accessibility and interpretation and facilitates
independent learning in the field of chemistry research.
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inherently interpretable, we probed the relative importance of
the descriptors used in building the model. One potential
measure of a descriptor’s importance is the percent decrease in
the model’s accuracy score when values for that descriptor are
randomly shuffled and the model is retrained. We found that
among the descriptors involved, the top 10 most influential
descriptors are key in predicting MOF crystallization outcomes
(Figure 6c). In fact, these descriptors broadly align with the
chemical intuition and our understanding on MOF crystal
growth.53,54 For example, the descriptors related to the
stoichiometry of the MOF synthesis, namely, the modulator to
metal ratio, solvent to metal ratio, and linker to metal ratio, take
precedence in the ranking. These descriptors reflect the vital role
of precise stoichiometric control in MOF crystal formation and
directly impact the crystallization process, playing critical roles
in determining the quality and morphology of the MOF crystals.

Following closely is the descriptor “time”, and it highlights the
significant role of reaction duration in the crystallization process.
Additionally, the “metal valence” descriptor emphasizes the key
role of the nature and reactivity of the metal ions used in MOF
synthesis. The valence directly influences the secondary building
units (SBUs) and the final crystalline state of the MOF. In the
meantime, descriptors related to the molecule and the linker can
impact the kinetics of the synthesis, influencing the orderliness
of crystal growth. Together, this result provides a greater
understanding of the crucial factors affecting the crystallization
of MOFs and will aid in the design and optimization of synthesis
conditions for the targeted preparation of single-crystal or
polycrystalline MOFs (Figure 6d).
Interrogating the Synthesis Data Set via a Chatbot.

Having utilized text mining techniques to construct a
comprehensive MOF Synthesis Data set, our aim was to
leverage this resource to its fullest potential. To enhance data
accessibility and aid in the interpretation of its intricate contents,
we embarked on a journey to convert this data set into an
interactive and user-friendly dialogue system, which effectively
converts the data set to dialogue. The resulting chatbot is part of
the umbrella concept of the ChatGPT Chemistry Assistant thus
serving as a reliable and fact-based assistant in chemistry,
proficient in addressing a broad spectrum of queries pertaining
to chemical reactions, in particular, MOF synthesis. Unlike
typical and more general web-based ChatGPT provided by
OpenAI, it may suffer from limitations such as the inability to
access the most recent data and a propensity for hallucinatory
errors. This chatbot is grounded firmly in the factual data
contained within the MOF synthesis data set from text mining
and is engineered to ensure that responses during conversations
are based on accurate information and synthesis conditions
derived from text mining the literature (Supporting Information,
Section S6).

In particular, to construct the chemistry chatbot, our initial
step was the creation of distinct entries corresponding to each
MOF we identified from the text mining, which encompasses a
comprehensive array of synthesis parameters, such as the
reaction time, temperature, metal, and linker, among others,
using the data set we have. Recognizing the value of
bibliographic context, we compiled a list of paper information,
such as authors, DOI, and publication years, collated from the
Web of Science, into each section (Supporting Information,
Table S3). Subsequently, we generated embeddings for each of
these information cards of different compounds, thereby
constructing an embedding data set (Figure 7). When a user
asks a question, if it is the first query, the system first navigates to

the embedding data set to locate the most relevant information
card using the question’s embedding, which is based on a
similarity score calculation and is similar to the foundation of
Process 3 in textmining. The information on the highest-ranking
entry is then dispatched to the prompt engineering module of
the MOF chatbot, guiding it to construct responses centered
solely around the given synthesis information.

To mitigate the possibility of hallucination, the chatbot is
programmed to refrain from addressing queries that fall outside
the scope of the data set. Instead, it encourages the user to
rephrase the question (Supporting Information, Figure S69). It
is worth noting that, following the initial query, the chatbot
“memorizes” the conversation context by being presented with
the context of prior interactions between the user and itself. This
includes the synthesis context and paper information identified
from the initial query, ensuring that the answers to subsequent
queries are also based on factual information from the data set.
Consequently, this strategy guarantees that responses to ensuing
queries are contextually accurate, being grounded in the facts
outlined in the synthesis data set and corresponding paper
information (Figure 7 and Supporting Information, Figures
S71−S74).

By virtue of its design, the chatbot addresses the challenge of
enhancing data accessibility and interpretation. It accomplishes
this by delivering synthesis parameters and procedures in a clear
and comprehensible manner. Furthermore, it ensures data
integrity and traceability by providing DOI links to the original
papers, guiding users directly to the source of information. This
functionality is particularly beneficial for newcomers to the field.
By leveraging ChatGPT’s general knowledge base, they can
receive guided instructions through the synthesis process, even
when faced with a procedure in a journal that is ambiguously or
vaguely described. In this case, the user can consult ChatGPT to
“chat with the paper” for a more precise explanation, thereby
simplifying the learning process and facilitating a more efficient
understanding of complex synthesis procedures. This capability
fosters independent learning and expedites the comprehension
of intricate synthesis procedures, reinforcing ChatGPT’s role as
a valuable assistant in the field of chemistry research.
Exploring Adaptability and Versatility in Large

Language Models. The adaptability of LLM-based programs,
a hallmark feature distinguishing them from traditional NLP
programs, lies in their inherent ability to modify search targets or
tasks simply by adjusting the input prompt. Whereas traditional
NLP models may necessitate a complete overhaul of rules and
coding in the event of task modifications, programs powered by
ChatGPT and some other LLMs utilize a more intuitive
approach. A simple change in narrative language within the
prompt can adequately steer the model toward the intended
task, obviating the need for elaborate code adjustments.

However, we recognize limitations within the current
workflow, particularly concerning token limitations. Research
articles for text mining were parsed into short snippets due to the
4096 token limit from GPT-3.5-turbo, since longer research
articles can extend to 20 000−40 000 tokens. This fragmenta-
tion may inadvertently result in the undesirable segmentation of
the synthesis paragraphs or other sections containing pertinent
information. To alleviate this, we envision that a large language
model that can process higher token memory61,62 such as GPT-
4-32K (OpenAI) or Claude-v1 (Anthropic) will be very helpful
since each time, it reads the entire paper rather than just sections,
which can further increase its accuracy by avoiding undesirable
segmentation of the synthesis paragraph or other targeted
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paragraphs containing information. Longer reading capabilities
will also have the added benefit of reducing the number of
tokens used in repeated questions, thus enhancing processing
times. As we continue to refine our workflow, we believe that
there are additional opportunities for improvement. For
instance, parts of the fixed prompt could be more concise to
save tokens, and the examples in the few-shot prompt can be
further optimized to reduce the total tokens. Given that each
paper may have around 100 segments, such refinements could
dramatically reduce time and costs, particularly for classification
and summarization tasks, which must process every section with
the same fixed prompt, especially for few-shot instructions.

Furthermore, language versatility, a crucial aspect in the realm
of text mining, is seamlessly addressed by LLMs. Traditional
NLP models, trained in a specific language, often struggle when
the task requires processing text data in another language. For
example, if the model is trained on English data, it may require
substantial adjustments or even a complete rewrite to process
text data in Arabic, Chinese, French, German, French, Japanese,
Korean, and some other languages. However, with LLMs that
can handle multiple languages, such as ChatGPT, we showed
that researchers just need to slightly alter the instructions or
prompts to achieve the goal, without the necessity of substantial
code modifications (Supporting Information, Figures S55−
S58).

The adaptable nature of LLMs can further extend their
versatility in handling diverse tasks. We demonstrated how
prompts can be changed to direct ChatGPT to parse and
summarize different types of information from the same pool of
research articles. For instance, with minor modification of the
prompts, we show that our ChatGPT Chemistry Assistants have
the potential to be instructed to summarize diverse information
such as thermal stability, BET surface area, CO2 uptake, crystal
parameters, water stability, and evenMOF structure or topology
(Supporting Information, Section S4). This adaptability was
previously a labor-intensive process, requiring experienced
specialists to manually collect or establish training sets for text
mining each type of information.11,13,35,41,63−66

Moreover, the utility of this approach can benefit the broader
chemistry domain: it is capable of not only facilitating data
mining in research papers addressing MOF synthesis but also
extending it to all chemistry papers with the accorded
modifications. By fine-tuning the prompt, the ChatGPT
Chemistry Assistant can effectively extract and tabulate data
from diverse fields, such as organic synthesis, biochemistry
preparations, perovskite preparations, polymer synthesis, and
more. This capability underscores the versatility of the
ChatGPT-based assistant, not only in terms of subject matter
but also in terms of the level of detail it can handle. In the event
that key parameters for data extraction are not explicitly defined,
ChatGPT can be prompted to suggest parameters based on its
trained understanding of the text. This level of adaptability and
interactivity is unparalleled in traditional NLP models, high-
lighting a key advantage of the ChatGPT approach. The shift
from a code-intensive approach to a natural language instruction
approach democratizes the process of data mining, making it
accessible even to those with less coding expertise, making it an
innovative and powerful solution for diverse data mining
challenges.

■ CONCLUDING REMARKS
Our research has successfully demonstrated the potential of
LLMs, particularly GPT models, in the domain of chemistry

research. We presented a ChatGPT Chemistry Assistant that
includes three different but connected approaches to text mining
with ChemPrompt Engineering: Process 3 is capable of
conducting search and filtration, Processes 2 and 3 classify
synthesis paragraphs, and Processes 1, 2, and 3 are capable of
summarizing synthesis conditions into structured data sets.
Enhanced by three fundamental principles of prompt engineer-
ing specific to chemistry text processing, coupled with the
interactive prompt refinement strategy, the ChatGPT-based
assistant has substantially advanced the extraction and analysis
of the MOF synthesis literature, with precision, recall, and F1
scores exceeding 90%.

We elucidated two crucial insights from the data set of
synthesis conditions. First, the data can be employed to
construct predictive models for reaction outcomes, which shed
light on the key experimental factors that influence the MOF
crystallization process. Second, it is possible to create an MOF
chatbot that can provide accurate answers based on text mining,
thereby improving access to the synthesis data set and achieving
a data-to-dialogue transition. This investigation illustrates the
potential for rapid advancement inherent in ChatGPT and other
LLMs as a proof of concept.

On a fundamental level, this study provides guidance on
interacting with LLMs to serve as AI assistants for chemists,
accelerating research with minimal prerequisite coding expertise
and thus bridging the gap between chemistry and the realms of
computational and data science more effectively. Through
interaction and chatting, the code and design of experiments can
be modified, democratizing data mining and enhancing the
landscape of scientific research. Our work sets a foundation for
further exploration and application of LLMs across various
scientific domains, paving the way for a new era of AI-assisted
chemistry research.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
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Detailed instructions and design principles for Chem-
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employed in the ChatGPT Chemistry Assistant for text
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steps involved in setting up theMOF chatbot based on the
MOF synthesis condition data set (PDF)
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