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Abstract: Herein, we report the synthesis of a nitrone-
linked covalent organic framework, COF-115, by com-
bining N, N’, N’, N’’’-(ethene-1, 1, 2, 2-tetraylte-
trakis(benzene-4, 1-diyl))tetrakis(hydroxylamine) and
terephthaladehyde via a polycondensation reaction. The
formation of the nitrone functionality was confirmed by
solid-state 13C multi cross-polarization magic angle
spinning NMR spectroscopy of the 13C-isotope-labeled
COF-115 and Fourier-transform infrared spectroscopy.
The permanent porosity of COF-115 was evaluated
through low-pressure N2, CO2, and H2 sorption experi-
ments. Water vapor and carbon dioxide sorption analy-
sis of COF-115 and the isoreticular imine-linked COF
indicated a superior potential of N-oxide-based porous
materials for atmospheric water harvesting and CO2

capture applications. Density functional theory calcula-
tions provided valuable insights into the difference
between the adsorption properties of these COFs.
Lastly, photoinduced rearrangement of COF-115 to the
associated amide-linked material was successfully dem-
onstrated.

Development of new linkages to broaden the scope of
covalent organic frameworks (COFs) has been one of the
major drivers of the research field.[1,2] The diversity of
linkage functionalities plays a critical role in tuning the
material properties including its chemical stability,[3] adsorp-
tion behavior,[4] and catalytic activity.[5] Despite the ubiqui-
tous usage of the imine linkage in various studies, its
oxidized counterpart, the nitrone functionality, remains
elusive as a linkage in COFs.[2] Nitrone compounds, featur-
ing 1,3-dipolar structures, are versatile synthetic intermedi-
ates that can undergo nucleophilic additions, cycloaddition
reactions, and photochemical rearrangements. Additionally,
nitrones can serve as spin traps to detect short-lived radicals
and their therapeutic potential against oxidative stress has
been actively studied.[6] Thus, synthesis of porous, crystalline
nitrone-linked frameworks will provide an invaluable oppor-
tunity to expand the linkage chemistry of COFs potentially
diversifying their properties and applications.

Although being widely utilized in side chains in polymer
chemistry, the nitrone functionality has largely been unex-
plored to constitute backbones of polymers.[7] This can
partially be attributed to the difficulty of synthesizing
multidentate hydroxylamine monomers.[8] Herein, we found
an easy synthetic route (Supporting Information, Section
S2) to access N, N’, N’, N’’’-(ethene-1, 1, 2, 2-
tetrayltetrakis(benzene-4, 1-diyl))tetrakis(hydroxylamine)
(1) and to reticulate it with terephthaladehyde (2) via a
polycondensation reaction leading to COF-115 (Scheme 1).
Previous studies showing reversibility of the condensation
reaction between aromatic hydroxylamines and aldehydes[9]

were encouraging that a successful framework crystallization
is feasible. However, due to thermal sensitivity of the
nitrone functionality,[7a] we expected that the typical con-
ditions for the crystallization of imine-linked COFs (120 °C,
3 days) would be unsuitable for COFs bearing nitrone
linkages. After comprehensive screening of the reaction
conditions, COF-115 was synthesized in a 1,4-dioxane/
mesitylene mixture at room temperature for 6 days using an
aqueous solution of acetic acid as a catalyst. Furthermore,
the use of aniline as a modulator was essential for high
crystallinity of the target COF. The material was found to be
sensitive to moisture in the air (Supporting Information,
Figure S1d), therefore anhydrous 1,4-dioxane and acetone
were used for the washing procedure to remove any
impurities within the COF pores. After supercritical CO2

drying and activation, COF-115 had to be stored under inert
atmosphere.

[*] K. Wang, Prof. Dr. O. M. Yaghi
Department of Chemistry, Kavli Energy Nanoscience Institute and
Bakar Institute of Digital Materials for the Planet, Division of
Computing, Data Science, and Society, University of California
Berkeley, CA 94720 (USA)
E-mail: yaghi@berkeley.edu

Prof. Dr. O. M. Yaghi
UC Berkeley—KACST Joint Center of Excellence for Nanomaterials
for Clean Energy Applications, King Abdulaziz City for Science and
Technology
Riyadh 11442 (Saudi Arabia)

Dr. B. Huang,+ Prof. Dr. F. D. Toste
Department of Chemistry, University of California, Berkley
Berkeley, CA 94720 (USA)
E-mail: fdtoste@berkeley.edu

Dr. D. Kurandina,+ Dr. W. Xu, Dr. N. Hanikel
Department of Chemistry and Kavli Energy Nanoscience Institute,
University of California, Berkeley
Berkeley, CA 94720 (USA)

Dr. A. Darù, Dr. G. D. Stroscio, Prof. Dr. L. Gagliardi
Department of Chemistry, Pritzker School of Molecular Engineer-
ing, and Chicago Center for Theoretical Chemistry, University of
Chicago
Chicago, IL 60637 (USA)
E-mail: lgagliardi@uchicago.edu

[+] These authors contributed equally to this work.

[**]A previous version of this manuscript has been deposited on a
preprint server (https://doi.org/10.26434/chemrxiv-2023-4bq69).

Angewandte
ChemieCommunications
www.angewandte.org

How to cite: Angew. Chem. Int. Ed. 2023, e202307674
doi.org/10.1002/anie.202307674

Angew. Chem. Int. Ed. 2023, e202307674 (1 of 5) © 2023 Wiley-VCH GmbH

http://orcid.org/0000-0001-8599-7572
http://orcid.org/0000-0002-5049-1907
http://orcid.org/0000-0002-9772-1036
http://orcid.org/0000-0002-3292-5070
http://orcid.org/0000-0002-0825-2101
http://orcid.org/0000-0002-0827-1062
http://orcid.org/0000-0003-2464-2828
http://orcid.org/0000-0001-5227-1396
http://orcid.org/0000-0001-8018-2198
http://orcid.org/0000-0002-5611-3325
https://doi.org/10.26434/chemrxiv-2023-4bq69
https://doi.org/10.1002/anie.202307674
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fanie.202307674&domain=pdf&date_stamp=2023-07-24


The structure of COF-115 was evaluated by powder X-
ray diffraction (PXRD) analysis (Figure 1a). The framework
was modeled in the P6 space group (No. 168), with the
layers assuming the kgm topology stacked in an eclipsed
fashion. Three different linker orientations were analyzed
by conducting periodic DFT calculations (Supporting In-
formation, Section S7.1). Using the most stable optimized

structural model (COF-115-3), Pawley refinement was
performed against the experimental pattern to provide the
unit cell parameters (a=38.2 Å, and c=5.3 Å) with reason-
able agreement factors (Rwp=3.43%, Rp=2.66%).

The presence of the nitrone functionality in the frame-
work was first assessed by Fourier-transform infrared (FT-
IR) spectroscopy (Figure 1b). The prominent peak at
1075 cm� 1, which is absent in the FT-IR spectrum of the
isoreticular imine-linked COF that was synthesized by using
a previously published procedure,[3a,10] was assigned to the
N� O stretch.[11] Based on isotope labeling analyses of COF-
115 and the model compound 3 (Supporting Information,
Figure S2), the stretches at 1553 and 1597 cm� 1 were
attributed to the vibrations of the C=N and aromatic C=C
bonds, respectively. The C=N bond stretch of the nitrone
functionality is naturally shifted to a lower frequency
compared to the imine C=N stretch (1623 cm� 1).[11]

Next, the 13C-labeled COF-115 was synthesized via a
polycondensation reaction between a 13C-labeled terephtha-
ladehyde (2’) and the hydroxylamine-linker 1. The resulting
product was analyzed by solid-state 13C multi cross-polar-
ization magic angle spinning (multiCP-MAS) NMR spectro-
scopy. The major peak at 135.1 ppm evidently showed that
the COF is mainly connected via the nitrone linkage
(Figure 1c),[7a] which was in good agreement with the
respective shift of 13C-labeled model compound 3’
(133.1 ppm). Based on a previous report,[3a] the minor peaks
at 159.4 and 192.1 ppm were assigned to imine and aldehyde
defects (8% each), respectively.[12]

The porosity of COF-115 was studied via nitrogen
sorption analysis at 77 K (Figure 2). A Type IV adsorption
isotherm was observed, thus indicating the presence of
mesopores in the framework structure. A surface area of
1387 m2/g was estimated using the Brunauer–Emmett–Teller
(BET) model. DFT analysis of the nitrogen adsorption
isotherm provided a bimodal pore size distribution, which
further confirmed the structure of COF-115 exhibiting
micro- and mesopores (Figure 2, inset). This was further
validated by the water vapor sorption isotherm of COF-115
that exhibited a characteristic two-step profile indicative of

Scheme 1. Synthesis of the nitrone-linked COF-115 by connecting
N, N’, N’, N’’’- (ethene- 1, 1, 2, 2- tetrayltetrakis(benzene-4,1-diyl))-
tetrakis(hydroxylamine) (1) and terephthaladehyde (2) via a polycon-
densation reaction.

Figure 1. Characterization of COF-115: a) Pawley refinement of COF-115 (eclipsed, AA) against the experimental PXRD pattern; b) FT-IR spectra of
COF-115 (red), its isoreticular imine-linked COF (blue), and model compound 3 (green); c) Solid-state 13C multiCP-MAS NMR spectra of the 13C-
labeled COF-115 and 13C-labeled model compound 3’.
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the presence of two significantly different-sized pores
(Supporting Information, Figure S5).

The zwitterionic nature of the nitrone functionality in
COF-115 was anticipated to have more favorable interac-
tions with polar or polarizable gas molecules compared with
an isostructural imine-linked COF of the same pore size. To
probe this hypothesis, we compared the water vapor and
carbon dioxide sorption behavior of the two isoreticular
COFs, COF-115 and the imine-linked COF. Importantly,
both COFs featured similar pore sizes and BET surface
areas, as evaluated by the nitrogen sorption analysis at 77 K
(Supporting Information, Figure S4). The water vapor
sorption isotherm of COF-115 was significantly shifted to
lower relative humidity (by ~20% RH) compared with the
isotherm of the imine-linked COF (Figure S5). This result
showcases an unexplored potential of N-oxide-containing
materials for atmospheric water harvesting applications.[13]

Likewise, COF-115 demonstrated superior CO2 capture
properties (Figures S6). The volumetric CO2 uptake of
COF-115 was 37 cm3/g at 1 bar and 298 K, while it was
26 cm3/g for the imine-linked COF (Figure S6a). Further-
more, the higher isosteric heat of adsorption (Qst) values
estimated for COF-115 are indicative of stronger interac-
tions of carbon dioxide molecules with the nitrone frame-
work compared to the imine-linked COF (Figure S6b).
Finally, the hydrogen sorption isotherm of COF-115 at 77 K
revealed an overall uptake capacity of 151 cm3/g (1.34 wt.%)
at 1 bar (Figure S7), which is comparable to the uptake of its
imine-based analog (1.37 wt.%).[10] The nearly identical
hydrogen sorption properties can be ascribed to the similar
porosity of the two materials. Interestingly, the zero-loading
Qst value for COF-115 was determined to be 7.4 kJmol� 1,
which is higher than the values obtained for some imine-[14]

and most boroxine-linked COFs (4.4–7 kJmol� 1).[15]

To get insight into the superior adsorption behavior of
COF-115, the interactions of both nitrone- and imine-based
frameworks with water and CO2 molecules were studied
computationally. First, pristine COF structures (three poten-

tial structural variants of COF-115 and the reported imine-
COF structure[3a]) were optimized using periodic DFT
calculations with the PBEsol-D3BJ functional[16] (Supporting
Information, Section S7.1). Following the structure optimi-
zation, we investigated the primary adsorption sites of water
and CO2 for the COFs at a loading of one guest molecule
per linkage. As a result, the most stable COF-115 structure
(COF-115-3) binds a water molecule stronger by about
1.3 kcal/mol in free energy terms (computed via the
SCAN� D3BJ functional[17]) compared to the imine-linked
COF. This difference is likely responsible for the experimen-
tally observed shift of the water sorption isotherm of the
former COF towards lower RH values. Likewise, the SCAN
functional-based computations[18] predicted stronger interac-
tions of COF-115 with CO2 molecules compared to the
imine-linked COF (Supporting Information, Section S7.2).

Lastly, we explored the photochemical properties of the
nitrone-linked COF. It was reported that small-molecule
nitrone compounds can undergo photoisomerization reac-
tions to afford oxaziridine products. The stability of the
latter greatly depends on the nature of substituents, and in
the case of aryl groups, oxaziridines are known to readily
decompose to amides and aldehyde products.[6a,19] First, we
subjected model compound 3 to irradiation conditions (30
min, 370 nm) and observed the formation of compound 4 in
87% NMR yield and traces of terephthalaldehyde
(Scheme 2, (1)). The photoreactivity of COF-115 was
studied under neat conditions under inert atmosphere
employing an activated sample of 13C-labeled COF-115. The
sample was irradiated for 4–7 days and analyzed by FT-IR,
PXRD and 13C multiCP-MAS NMR (Supporting Informa-
tion, Section S10). The crystallinity was found to gradually
decrease upon prolonged irradiation (Figure S14a), with
conversion reaching 84% after 7 days according to solid-
state 13C multiCP-MAS NMR (Figure S15b). The main
products of this reaction were identified as amide A (54%),
amide B (15%) and aldehyde (15%) (Scheme 2, (2)). This
skeletal rearrangement represents a rare example of a post-
synthetic COF modification induced by light.[20,21]

In summary, this report demonstrates the first direct,
one-step synthesis of a crystalline, porous COF with nitrone
linkages. We believe it will pave the way for other nitrone-

Figure 2. N2 sorption isotherm of COF-115 at 77 K and its pore size
distribution profile (inset).

Scheme 2. Photoinduced rearrangement reactions of model compound
3 (1) and 13C-labeled COF-115 (2).
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linked COFs of different topologies. Water vapor and
carbon dioxide sorption analyses of this COF showcased an
untapped potential of N-oxide-based porous materials for
atmospheric water harvesting and CO2 capture applications
compared to their well-known imine-based analogs.
Through DFT calculations, preferential interactions with the
nitrone functionality are identified as the origin of its
favorable absorption properties. In addition, the demon-
strated photoinduced isomerization of COF-115 to the
corresponding amide-linked material is a promising avenue
for post-synthetic framework modifications.
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A Porous Crystalline Nitrone-Linked Cova-
lent Organic Framework

A nitrone-linked covalent organic frame-
work, COF-115, has been synthesized for
the first time via polycondensation reac-
tion. The sorption analyses of COF-115
revealed a porosity of 1387 m2/g, and a
superior potential for atmospheric water
harvesting and CO2 capture applications
compared to their imine-based analogs.
Finally, COF-115 was found to undergo a
photochemical rearrangement to the
corresponding amide-linked material.
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