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ABSTRACT: Metal organic frameworks (MOFs) can have open
pore structures with high surface areas and applications in
hydrogen storage, carbon dioxide capture, water harvesting from
air, chemical separations, and catalysis. The chemical structure of
these crystalline solids can initially appear daunting. Simplification
by considering the arrangement of the pores and by identifying the
links and vertices as well as switching between multiple
representations can make visualization of these structures
accessible.
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Reticular chemistry is the linking of molecular building
blocks by strong bonds to make crystalline extended

structures.1 Metal organic frameworks, or MOFs, are products
of this chemistry and have become interesting for their open
pore structures with high surface areas and applications in
hydrogen storage, carbon dioxide capture, water harvesting
from air, chemical separations, and catalysis.2−7

Publications about MOFs in this journal have primarily
concerned synthesis and characterization.8−19 One report was
a study of the impact of including material about MOFs as an
introduction to authentic research.20 Another included model
building of MOFs using interlocking disks sold as toys to
introduce the topology of primary and secondary building
units,21 discussed further below.
Currently, over 100,000 MOFs have been reported with

nearly 500,000 predicted.22−25 To an incoming student
interested in MOFs the task of deciphering MOF structures
is daunting not just for their sheer number but also because
their structures can initially appear complicated. However,
many MOF structures can be reduced in a systematic fashion
into simpler basic forms, which in themselves are familiar to
students. The goal of this paper is to identify and illustrate the
key connections that students can make with their prior
knowledge of such simpler forms to enhance comprehension of
MOF structures.

■ SPHERE PACKING

One way to simplify framework structures is to view the sphere
packing arrangement of their pores. Visualizing where the
atoms are not located is a complementary skill to visualizing

where the atoms are located. This simplification makes use of
known crystal structures, and cubic examples will be used here.
Packing of spheres has been a useful way to describe metallic

structures at the atomic level. Most introductory courses
mention the primitive cubic, body-centered cubic, and face-
centered cubic structures exhibited by more than 30 elements.
Filling the spaces between the anions with cations leads to
ionic structures. The NaCl, ZnS, and CaF2 structures are
prototypical26 and were correctly described by W. H. and W.
L. Bragg in 1915.27 (The Braggs originally listed CsCl as
isomorphous with NaCl, and it was not until 1921 that the
correct structure was suggested.28)
Figures 1−8 show a cubic unit cell for each of these classic

structures in the upper left. The additional panels contain a
cubic unit cell of pores in a MOF along with more than a unit
cell of the actual MOF structure. Each of these structures can
be interactively viewed online. See the Multiple Representa-
tions section below.
Figure 1 shows the primitive cubic structure of polonium in

comparison with the primitive cubic arrangement of pores in
the IRMOF29 series of isoreticular structures. Figure 2 shows
the CsCl structure where the atom in the center of the unit cell
is different than the atom on the corners of the unit cell.
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Zeolite A,30 ZIF-20,31 and MOF-TPT32 are framework
structures with two kinds of pores: one located on the corners
of the cubic unit cell and one located in the center. In the CsCl
structure, either atom could be viewed as the corner since the
structure comprises two interpenetrating primitive cubic
arrangements such that one set sits in the cubic holes of the
other set. Figure 3 shows the body-centered cubic structure
exhibited by Li, Na, K, Rb, Cs, Ba, Ra, V, Nb, Cr, Mo, W, Mn,
and Fe, where the atom in the center of the unit cell is the
same as the atom on the corners of the unit cell. MIL-125,33

ZIF-8,34 and MOF-10135 are framework structures with a
body-centered cubic arrangement of pores. Figure 4 shows the
Cu3Au structure, also exhibited by Pt3Ag, Fe3Ga, Fe3Sn,
Cr3Nb, Bi3Hg, Ce3In, Ir3Ta, Os3Hf, Yb3Mg, and Nb3Si. In the
Cu3Au structure, Au atoms are located on the corners of the
cubic unit cell and Cu atoms are located on the faces. NU-
110236 is a MOF example with two types of pores: one located
on the corners of the cubic unit cell and one located on the
faces. Figure 5 shows the face-centered cubic structure

exhibited by Ca, Sr, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Al, Pb,
Yb, Ac, and Th and solid Ne, Ar, Kr, Xe, and Rn. The atom
located on each of the faces is the same as the atom on the
corner of the unit cell. UMCM-337 is a MOF example of a

Figure 1. Left: Primitive cubic polonium. Right: IRMOF-16 with 15
Å spheres in the spaces. (The pores are not strictly crystallographically
equivalent unless the link ring orientations are disordered.)

Figure 2. Top left: CsCl salt. Top right: Zeolite A with 7 Å spheres in
two types of spaces. Bottom left: ZIF-20 with 6 Å spheres in two types
of spaces. Bottom right: MOF-TPT with 10 Å spheres in two types of
spaces.

Figure 3. Top left: Body-centered cubic Fe. Top right: MIL-125 with
10 Å spheres in the spaces. Bottom left: ZIF-8 with 10 Å spheres in
the spaces. Bottom right: MOF-101 with 14 Å spheres in the spaces.

Figure 4. Left: Cu3Au alloy. Right: NU-1102 with 12 Å spheres in
two types of spaces.

Figure 5. Left: Face-centered cubic Cu. Right: UMCM-3 with 16 Å
spheres in the spaces.
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framework with identical pores on the corners and faces of the
cubic unit cell.
The NaCl structure shown in Figure 6 has a face-centered

cubic arrangement of one atom with the other atom located on

the 12 edges of the cubic unit cell. ALPO-1630 is an example of
a framework structure with two types of pores; one set is
located on the corners and faces while the other set is located
on the cell edges. In the NaCl structure either atom could be
viewed as the corner since the structure comprises two
interpenetrating face-centered cubic arrangements such that
one set sits in the octahedral holes of the other set. The CaF2
(fluorite) structure in Figure 7 is a face-centered cubic

arrangement of calcium atoms with an interpenetrating simple
cubic arrangement of fluorine atoms such that the cubic set sits
in the tetrahedral holes of the face-centered cubic set. MOF-
801,38 SUM-5,39 and UiO-6840,41 have two sets of pores with
the same arrangement as does UiO-6640 shown in the
graphical abstract. In the cubic ZnS (zinc blende or sphalerite)
structure in Figure 8, half the tetrahedral positions are vacant.

When both atoms are the same this is the diamond structure.
Faujasite (Zeolite Y)30 and MIL-10042,43 are framework
structures with the diamond arrangement of pores. Over
20,000 atoms are included in Figure 8 for MIL-100, but the
diamond structure of the holes can still be identified, clearly
illustrating the simplification of looking at the voids as well as
the atoms.

■ TOPOLOGY
Another way to simplify framework structures is by topology,
viewing the structures as connected links and vertices.44,45 The
vertices could be single atom points or larger units such as
polynuclear metal oxide clusters. The points at which such
clusters connect to other building units are called points-of-
extension. In the carboxylate MOFs, the carboxylate carbon
atoms are chosen as the points-of-extension. The links have
more than one carboxyl group that attaches to the vertices, and
therefore, the points-of-extension define the geometric unit
and its overall connectivity in a MOF structure. Topology
allows researchers to imagine a structure of a specific
connectivity of building units, identify the molecules
representing such units, and to build the corresponding
structures from those molecules. Often the link is chosen to
impart specific length and angle relationships between the
molecular building units in order to realize a specific MOF
structure. Figure 9 shows examples of 4, 6, 8, and 12
connection vertices. Figure 10 shows examples of linear,
trigonal, square, and tetrahedral links.
Network topology nomenclature is an extension of stereo-

chemical nomenclature such as cis, trans, fac, and mer for
molecular compounds.46 Different topologies are referred to by
three letter names defined by the Reticular Chemistry
Structure Resource, RCSR.47 While pcu is primitive cubic, fcu
is face-centered cubic, dia is diamond, and some codes come
from mineral names, most topology codes are randomly
assigned.45

Figure 6. Left: NaCl. Right: AlPO-16 with 4 Å spheres in the spaces.

Figure 7. Top left: CaF2 salt. Top right: MOF-801 with 8 Å spheres
in two types of spaces. Bottom left: SUM-5 with 13 Å spheres in two
types of spaces. Bottom right: UiO-68 with 14 Å spheres in two types
of spaces.

Figure 8. Top left: Cubic ZnS (zinc blende or sphalerite). Top right:
Diamond. Bottom left: Faujasite (Zeolite Y) with 6 Å spheres in the
spaces. Bottom right: MIL-100 with 16 Å spheres in the spaces.
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■ MULTIPLE REPRESENTATIONS
Interactive versions of all figures in this paper are available
online,48 displayed using JavaScript and JSmol49 without
requiring software installation. More experienced chemists
make use of a greater variety of representations and
visualizations,50 but there is a need for greater scaffolding in
learning such skills.51 Using computer drawn images where the
representation is controlled by the user and can be
immediately switched to the same view in another
representation provides experience using multiple representa-
tions.52 For example, while the space filling view more
accurately shows the atom sizes, chemists routinely use a ball
and stick or even a line representation to make the structure
less crowded. The cited web page also makes available an
interactive slider to control the size of spheres located in the
structure pores. See Figure 11. This facilitates comparing pore
sizes in different structures, as illustrated in Figures 1−8. When
highlighting topology, the line representation is useful and
showing the metal polyhedra makes the hubs more noticeable

as seen in Figures 12 and 13. The chain representation is
helpful for interpenetrating structures.

Ref 48 can be used to interactively illustrate the main
concepts in this paper. A typical flowpath on the web page
would be to select a structure, wait a few seconds for the
coordinates to load, and then drag on the atoms to rotate the
structure. In the display options at the bottom of the page, drag
on the cavity ruler to populate the pores and adjust the size of
their blue and yellow spheres. The two colors represent
crystallographically independent pores. Select spacefill, ball and
stick, or lines to represent the atoms and better see the blue
and yellow spheres. Identify the blue and yellow spheres as
matching a simple structure. To examine the framework
topology you might then select metal polyhedra as a display
option and/or click on the radio button in front of the three
letter topology code next to the structure name. (Clicking on
the code itself goes to the RCSR topology database.)
An additional web page53 is available to examine the

structures and show just the link, just the vertex, each type of
pore, or the framework. The additional page has the same

Figure 9. Examples of MOF vertices with carboxylate linkers. Top
left: Cu2O2(RCO2)4 with four vertices. Top right: Zn4O(RCO2)6 with
six vertices. Bottom left: Zr6O8(H2O)8(RCO2)8 with eight vertices.
Bottom right: Zr6O4(OH)4(RCO2)12 with 12 vertices.

Figure 10. Examples of links with linear, trigonal, square, and
tetrahedral shapes.

Figure 11. Display options for figures from refs 48, 53, 57.

Figure 12. Multiple representations for the same view of IRMOF-1.29

Top left: Space filling. Top right: Ball and stick with filled pores
exhibiting the primitive cubic structure. Bottom left: line drawing with
metal polyhedra. Bottom right: line drawing with connectivity.
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controls as in Figure 11, a larger selection of MOFs, is better
suited toward measuring pore size but does not include the
comparisons with simple structures.

■ STUDENT LEARNING
The above material was introduced after a session that used
physical model kits54−56 to build the primitive cubic, body-
centered cubic, face-centered cubic, CsCl, NaCl, fluorite, zinc
blende, and diamond structures. The material was presented in
the spirit of extending what students had previously learned to
a new and important area of chemistry and as a check to see if
students could recognize the cubic structures. Students were
asked to identify the structure of the MOF pores using a web
page that did not include the answers.57 A third of the students
correctly identified all of the structures, but another third of
the students only identified a few structures. A discovered
misconception was that a substantial number of students
thought the CsCl structure was body-centered cubic; this was
then discussed further in the next class. Students did seem to
appreciate the addition of applications and current research to
the model building exercise.
With additional time and possibly working in pairs, students

can (1) imagine a net, (2) deconstruct it into its vertices and
links constituents, and then (3) select molecules such as those
in Figures 9 and 10 that correspond to the geometries of those
constituents.44,45

■ SUMMARY
Models are used to simplify complex phenomena, and
molecular models often have the goal of reconstructing a
three-dimensional object in your mind.58 Making connections
between known cubic structures and pore locations, identifying
the topology of connected links and vertices, and using
multiple representations can be powerful simplifications for
visualizing MOFs.
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Figure 13. Multiple representations for the same view of MOF-806.38

Top left: Space filling. Top right: Ball and stick with filled pores
exhibiting the fluorite structure. Bottom left: line drawing with metal
polyhedral. Bottom right: line drawing with connectivity.
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